首页> 外文期刊>IEEE Transactions on Signal Processing >Hierarchical stochastic modeling of SAR imagery for segmentation/compression
【24h】

Hierarchical stochastic modeling of SAR imagery for segmentation/compression

机译:用于分割/压缩的SAR图像的分层随机建模

获取原文
获取原文并翻译 | 示例

摘要

There has been a growing interest in synthetic aperture radar (SAR) imaging on account of its importance in a variety of applications. One attribute leading to its gain in popularity is its ability to image terrain at extraordinary rates. Acquiring data at such rates, however, has drawbacks in the form of exorbitant costs in data storage and transmission over relatively slow channels; thus, addressing these problems is clearly important. To abate these and related costs, we propose a segmentation-driven compression technique using hierarchical stochastic modeling within a multiscale framework. Our approach to SAR image compression is unique in that we exploit the multiscale stochastic structure inherent in SAR imagery. This structure is well captured by a set of scale auto-regressive (AR) models that accurately characterize the evolution in scale of homogeneous regions of different classes of terrain. We thus use them to generate a multiresolution segmentation of the image. The segmentation is subsequently used in tandem with the corresponding models in a pyramid encoder to provide a robust, hierarchical compression technique that, in addition to coding the segmentation, achieves high compression ratios with impressive image quality.
机译:由于合成孔径雷达(SAR)在各种应用中的重要性,人们对它越来越感兴趣。使其获得普及的一个属性是其以非凡速率成像地形的能力。但是,以这种速率获取数据具有缺点,即在相对较慢的信道上进行数据存储和传输时,成本很高。因此,解决这些问题显然很重要。为了减少这些和相关成本,我们提出了一种在多尺度框架内使用分层随机建模的分段驱动压缩技术。我们的SAR图像压缩方法是独特的,因为我们利用了SAR图像中固有的多尺度随机结构。一组规模自回归(AR)模型可以很好地捕获此结构,该模型可以准确地表征不同类别的地形的同质区域的规模演化。因此,我们使用它们来生成图像的多分辨率分割。随后将分割与金字塔编码器中的相应模型一起使用,以提供一种鲁棒的分层压缩技术,该技术除了对分割进行编码外,还可以实现高压缩比并具有令人印象深刻的图像质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号