首页> 外文期刊>IEEE Transactions on Image Processing >Minimal Stochastic Complexity Image Partitioning With Unknown Noise Model
【24h】

Minimal Stochastic Complexity Image Partitioning With Unknown Noise Model

机译:未知噪声模型的最小随机复杂度图像分割

获取原文
获取原文并翻译 | 示例

摘要

We present a generalization of a new statistical technique of image partitioning into homogeneous regions to cases where the family of the probability laws of the gray-level fluctuations is a priori unknown. For that purpose, the probability laws are described with step functions whose parameters are estimated. This approach is based on a polygonal grid which can have an arbitrary topology and whose number of regions and regularity of its boundaries are obtained by minimizing the stochastic complexity of the image. We demonstrate that efficient homogeneous image partitioning can be obtained when no parametric model of the probability laws of the gray levels is used and that this approach leads to a criterion without parameter to be tuned by the user. The efficiency of this technique is compared to a statistical parametric technique on a synthetic image and is compared to a standard unsupervised segmentation method on real optical images.
机译:我们提出了一种新的统计技术,将图像划分为同质区域,以解决先验未知的灰度波动概率定律族的情况。为此,用步函数描述概率定律,并对其参数进行估计。该方法基于多边形网格,该多边形网格可以具有任意拓扑,并且其区域数量和边界规则性是通过使图像的随机复杂度最小化而获得的。我们证明了,当不使用灰度级概率定律的参数模型时,可以获得有效的均质图像分区,并且这种方法导致无需用户调整参数的标准。将该技术的效率与合成图像上的统计参数技术进行比较,并与真实光学图像上的标准无监督分割方法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号