首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Context-Dependent Multisensor Fusion and Its Application to Land Mine Detection
【24h】

Context-Dependent Multisensor Fusion and Its Application to Land Mine Detection

机译:上下文相关的多传感器融合及其在地雷检测中的应用

获取原文
获取原文并翻译 | 示例

摘要

We present a novel method for fusing the results of multiple land mine detection algorithms which use different sensors, features, and different classification methods. The proposed multisensor/multialgorithm fusion method, which is called context-dependent fusion (CDF), is motivated by the fact that the relative performance of different sensors and algorithms can vary significantly depending on the mine type, geographical site, soil and weather conditions, and burial depth. CDF is a local approach that adapts the fusion method to different regions of the feature space. The training part of CDF has two components: context extraction and algorithm fusion. In context extraction, the features used by the different algorithms are combined and used to partition the feature space into groups of similar signatures, or contexts. The algorithm fusion component assigns a degree of worthiness to each detector in each context based on its relative performance within the context. To test a new alarm using CDF, each detection algorithm extracts its set of features and assigns a confidence value. Then, the features are used to identify the best context, and the degrees of worthiness of this context are used to fuse the individual confidence values. Results on large and diverse ground-penetrating radar and wideband electromagnetic data collections show that the proposed method can identify meaningful and coherent clusters and that different expert algorithms can be identified for the different contexts. Typically, the contexts correspond to groups of alarm signatures that share a subset of common features. Our extensive experiments have also indicated that CDF outperforms all individual detectors and the global fusion that uses the same method to assign aggregation weights.
机译:我们提出了一种融合多种使用不同传感器,特征和不同分类方法的多种地雷检测算法结果的新颖方法。提议的多传感器/多算法融合方法(称为上下文相关融合(CDF))是受以下事实的激励:不同的传感器和算法的相对性能可能会根据矿山类型,地理位置,土壤和天气状况而有很大差异,和埋葬深度。 CDF是一种局部方法,可将融合方法应用于特征空间的不同区域。 CDF的训练部分包括两个部分:上下文提取和算法融合。在上下文提取中,将不同算法使用的特征进行组合,并用于将特征空间划分为相似签名或上下文的组。算法融合组件根据其在上下文中的相对性能,为每个上下文中的每个检测器分配适当程度。为了使用CDF测试新警报,每种检测算法都提取其特征集并分配一个置信度值。然后,将这些特征用于标识最佳上下文,并使用该上下文的适当程度来融合各个置信度值。在大量不同类型的探地雷达和宽带电磁数据收集上的结果表明,该方法可以识别有意义且相干的簇,并且可以针对不同的环境识别不同的专家算法。通常,上下文对应于共享共同特征子集的警报签名组。我们的广泛实验还表明,CDF优于所有单独的检测器和使用相同方法分配聚集权重的全局融合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号