【24h】

Multisensor data fusion for surface land-mine detection

机译:多传感器数据融合用于地雷探测

获取原文
获取原文并翻译 | 示例

摘要

Receiver operating characteristic (ROC) curves have been used tonexamine a novel target recognition system using a number ofnknowledge-based techniques to automatically detect surface land minesnthat are present in 30 sets of thermal and multispectral images. Ansummary of the results, graphed at a probability of detection greaternthan or equal to 96%, shows the false-alarm rates (FARs) obtained usingnvarious combinations of fusing sensors and neural classifiers averagednover the 30 images. The results show that using two neural-networknclassifiers on the input textural and spectral characteristics ofnselected multispectral bands, we obtained FARs of approximately 3%.nUsing polarization-resolved images only, we obtained FARs of 1.15%.nFusing the best classifier output with the polarization-resolved images,nwe obtained FARs as low as 0.023%. This result has shown the largenimprovement gained in the sensor fusion. Also, an improvement is shownnby comparing these results with those reported in an existing commercialnsystem
机译:接收器工作特性(ROC)曲线已被用于一种新的目标识别系统,该系统使用了许多基于知识的技术来自动检测存在于30组热图像和多光谱图像中的地表地雷。结果摘要以检测概率大于或等于96%的图表显示,显示了使用融合传感器和神经分类器在30张图像中平均得到的各种组合而获得的误报率(FAR)。结果表明,在选择的多光谱波段的输入纹理和光谱特征上使用两个神经网络n分类器,我们获得了大约3%的FAR。仅使用偏振分辨图像,我们获得了1.15%的FAR.n将最佳分类器输出与偏振相结合分辨率图像,我们获得的FAR值低至0.023%。该结果表明在传感器融合方面获得了很大的改进。而且,通过将这些结果与现有商业系统中报告的结果进行比较,可以显示出一种改进

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号