首页> 外文期刊>IEEE transactions on systems, man and cybernetics. Part C >Multisensor data fusion for surface land-mine detection
【24h】

Multisensor data fusion for surface land-mine detection

机译:多传感器数据融合用于地雷探测

获取原文
获取原文并翻译 | 示例

摘要

Receiver operating characteristic (ROC) curves have been used to examine a novel target recognition system using a number of knowledge-based techniques to automatically detect surface land mines that are present in 30 sets of thermal and multispectral images. A summary of the results, graphed at a probability of detection greater than or equal to 96%, shows the false-alarm rates (FARs) obtained using various combinations of fusing sensors and neural classifiers averaged over the 30 images. The results show that using two neural-network classifiers on the input textural and spectral characteristics of selected multispectral bands, we obtained FARs of approximately 3%. Using polarization-resolved images only, we obtained FARs of 1.15%. Fusing the best classifier output with the polarization-resolved images, we obtained FARs as low as 0.023%. This result has shown the large improvement gained in the sensor fusion. Also, an improvement is shown by comparing these results with those reported in an existing commercial system.
机译:接收器工作特性(ROC)曲线已用于检查新颖的目标识别系统,该系统使用了许多基于知识的技术来自动检测存在于30组热图像和多光谱图像中的地雷。以检测概率大于或等于96%绘制的结果摘要显示了使用融合传感器和神经分类器的各种组合在30张图像上平均获得的误报率(FAR)。结果表明,使用两个神经网络分类器对选定的多光谱波段的输入纹理和光谱特征进行分析,得出的FAR约为3%。仅使用偏振分辨图像,我们获得的FAR为1.15%。将最佳分类器输出与偏振分辨图像融合,我们获得的FAR低至0.023%。该结果表明在传感器融合方面获得了很大的改进。此外,通过将这些结果与现有商业系统中报告的结果进行比较,可以看到一种改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号