首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Soil-Moisture Estimation From X-Band Data Using Tikhonov Regularization and Neural Net
【24h】

Soil-Moisture Estimation From X-Band Data Using Tikhonov Regularization and Neural Net

机译:使用Tikhonov正则化和神经网络从X波段数据估算土壤水分

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces soil-moisture parameter retrieval using high-resolution vertically polarized (VV) Spotlight TerraSAR-X data. The soil-moisture estimation of bare and vegetated areas is considered by using volumetric scattering, which is modeled with a bare-soil component and a component reflecting vegetation. The unknown coefficients of the soil-moisture model are estimated using the Tikhonov regularization scheme. A neural network is used in order to distinguish volumetric scattering from all the other types of scattering. The estimated volumetric-soil-moisture parameters are further enhanced by using a supervised feedforward backpropagation neural network. The proposed algorithm based on the Tikhonov regularization scheme, in combination with neural networks, provides good results for estimating volumetric-soil-moisture in an area covered with a small vegetation canopy.
机译:本文介绍了使用高分辨率垂直偏振(VV)Spotlight TerraSAR-X数据进行土壤水分参数检索。通过使用体积散射来考虑裸露和植被区域的土壤水分估算,该体积散射以裸露土壤成分和反映植被的成分为模型。使用Tikhonov正则化方案估算土壤水分模型的未知系数。为了将体积散射与所有其他类型的散射区分开来,使用了神经网络。通过使用有监督的前馈反向传播神经网络,可以进一步提高估算的体积-土壤-水分参数。基于Tikhonov正则化方案并结合神经网络的算法为估计植被小盖区的体积-土壤-水分提供了良好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号