首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Compressive Hyperspectral Imaging via Sparse Tensor and Nonlinear Compressed Sensing
【24h】

Compressive Hyperspectral Imaging via Sparse Tensor and Nonlinear Compressed Sensing

机译:稀疏张量和非线性压缩传感的压缩高光谱成像

获取原文
获取原文并翻译 | 示例

摘要

Recently, compressive hyperspectral imaging (CHI) has received increasing interests, which can recover a large range of scenes with a small number of sensors via compressed sensing (CS) theory. However, most of the available CHI methods separate and vectorize hyperspectral cubes into spatial and spectral vectors, which will result in heavy computational and storage burden in the recovery. Moreover, the complexity of real scene makes the sparsifying difficult and thus requires more measurements to achieve accurate recovery. In this paper, these two issues are addressed, and a new CHI approach via sparse tensors and nonlinear CS (NCS) is advanced for accurate maintenance of image structure with limited number of sensors. Based on a multidimensional multiplexing (MDMP) CS scheme, the observed measurements are denoted as tensors and a nonlinear sparse tensor coding is adopted, to develop a new tensor-NCS (T-NCS) algorithm for noniterative recovery of hyperspectral images. Moreover, two recovery schemes are advanced for T-NCS, including example-aided and self-learning CHI approaches. Finally, some experiments are performed on three real hyperspectral data sets to investigate the performance of T-NCS, and the results demonstrate its efficiency and superiority to the counterparts.
机译:近年来,压缩高光谱成像(CHI)受到越来越多的关注,它可以通过压缩传感(CS)理论用少量传感器恢复大范围的场景。但是,大多数可用的CHI方法将高光谱立方体分离并向量化为空间和光谱向量,这将导致恢复过程中沉重的计算和存储负担。而且,真实场景的复杂性使得稀疏变得困难,因此需要更多的测量来实现准确的恢复。本文解决了这两个问题,并提出了一种通过稀疏张量和非线性CS(NCS)的新CHI方法,以利用有限数量的传感器来精确维护图像结构。基于多维多路复用(MDMP)CS方案,将观测到的测量值表示为张量,并采用非线性稀疏张量编码,以开发一种新的张量-NCS(T-NCS)算法,用于非迭代地恢复高光谱图像。此外,针对T-NCS提出了两种恢复方案,包括实例辅助和自学习CHI方法。最后,在三个真实的高光谱数据集上进行了一些实验,以研究T-NCS的性能,结果证明了T-NCS的效率和优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号