首页> 外文期刊>IEEE Transactions on Image Processing >Exploiting Block-Sparsity for Hyperspectral Kronecker Compressive Sensing: A Tensor-Based Bayesian Method
【24h】

Exploiting Block-Sparsity for Hyperspectral Kronecker Compressive Sensing: A Tensor-Based Bayesian Method

机译:利用高光谱克朗克克朗克朗克群压缩感应的块稀疏性:一种张量的贝叶斯方法

获取原文
获取原文并翻译 | 示例

摘要

Bayesian methods are attracting increasing attention in the field of compressive sensing (CS), as they are applicable to recover signals from random measurements. However, these methods have limited use in many tensor-based cases such as hyperspectral Kronecker compressive sensing (HKCS), because they exploit the sparsity in only one dimension. In this paper, we propose a novel Bayesian model for HKCS in an attempt to overcome the above limitation. The model exploits multi-dimensional block-sparsity such that the information redundancies in all dimensions are eliminated. Laplace prior distributions are employed for sparse coefficients in each dimension, and their coupling is consistent with the multi-dimensional block-sparsity model. Based on the proposed model, we develop a tensor-based Bayesian reconstruction algorithm, which decouples the hyperparameters for each dimension via a low-complexity technique. Experimental results demonstrate that the proposed method is able to provide more accurate reconstruction than existing Bayesian methods at a satisfactory speed. Additionally, the proposed method can not only be used for HKCS, it also has the potential to be extended to other multi-dimensional CS applications and to multi-dimensional block-sparse-based data recovery.
机译:贝叶斯方法在压缩传感(CS)领域时,越来越受到关注,因为它们适用于从随机测量中恢复信号。然而,这些方法在许多基于张量的案例中使用的有限使用,例如高光谱克朗克克朗克压缩感测(HKC),因为它们仅在一个维度中利用稀疏性。在本文中,我们提出了一种新的贝叶斯模型,用于克服上述限制。该模型利用多维块 - 稀疏性,使得消除了所有尺寸的信息冗余。 LAPLACE先前的分布用于每个尺寸中的稀疏系数,它们的耦合与多维块 - 稀疏模型一致。基于所提出的模型,我们开发了一种基于张量的贝叶斯重建算法,它通过低复杂性技术对每个维度的超参数分离。实验结果表明,该方法能够以满意的速度提供比现有贝叶斯方法更准确的重建。另外,该方法不仅可以用于HKC,它还具有扩展到其他多维CS应用和基于多维块稀疏的数据恢复的可能性。

著录项

  • 来源
    《IEEE Transactions on Image Processing》 |2020年第2020期|1654-1668|共15页
  • 作者单位

    Jilin Univ Key Lab Bion Engn Changchun 130022 Jilin Peoples R China|Jilin Univ Coll Biol & Agr Engn Changchun 130022 Jilin Peoples R China;

    Harbin Inst Technol Dept Control Sci & Engn Harbin 150001 Heilongjiang Peoples R China;

    Jilin Univ Key Lab Bion Engn Changchun 130022 Jilin Peoples R China|Jilin Univ Coll Biol & Agr Engn Changchun 130022 Jilin Peoples R China;

    Jilin Univ Key Lab Bion Engn Changchun 130022 Jilin Peoples R China|Jilin Univ Coll Biol & Agr Engn Changchun 130022 Jilin Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Compressive sensing; hyperspectral image; bayesian model; block-sparse;

    机译:压缩感应;高光谱图像;贝叶斯模型;块稀疏;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号