首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Evaluation of Brightness Temperature Sensitivity to Snowpack Physical Properties Using Coupled Snow Physics and Microwave Radiative Transfer Models
【24h】

Evaluation of Brightness Temperature Sensitivity to Snowpack Physical Properties Using Coupled Snow Physics and Microwave Radiative Transfer Models

机译:利用雪雪物理和微波辐射传递模型评估雪温物理性质的亮度温度敏感性

获取原文
获取原文并翻译 | 示例

摘要

There are multiple existing microwave radiative transfer models (RTMs) to simulate the brightness temperature (Tb) of snowpacks. It is still challenging to have consistent Tb responses from RTMs due to individual physical formulations of the snowpack scattering process. This article examines three of the widely-used multi-layer RTMs: 1) the microwave emission model of layered snowpacks (MEMLS); 2) the dense media radiative transfer based on the quasi-crystalline approximation (QCA) of Mie scattering of densely packed sticky spheres (DMRT-QMS); and 3) the Helsinki University of Technology (HUT) model. Interestingly, these models yield slightly different Tb responses when driven by the same physical snowpack properties. Tb variations, dependent on the choice of RTMs, are then evaluated to improve the understanding of model differences in microwave emission from a snowpack. We first perform a sensitivity study of the Tb predictions from the three RTMs as a function of snow grain sizes, densities, and depths. While Tb from all three RTMs decreases with increasing snow grain sizes, it is found that a scaling factor is required to have the same amount of Tb attenuation for small grain sizes within the Rayleigh scattering regime. For larger grain sizes, however, a scaling coefficient is not enough to match the model outputs due to the different scattering assumptions of the RTMs. For a single snow layer with increasing snow depths and densities, all three RTMs exhibit Tb attenuations arising from the increase in path lengths and optical depths. Further evaluations are conducted by feeding the three RTMs with the output of a snow physics model driven by in situ weather forcing in a coupled simulation. Outputs of this coupled model include snowpack physical properties and Tbs. By using snow stratigraphy observations, another set of Tb simulation is also conducted with RTMs driven by in situ snowpit observations. The snow physics outputs from the coupled case are compared against in situ snow stratigraphy observations. And both Tb simulations are compared against ground-based microwave observations from the European Space Agency (ESA) Nordic Snow Radar Experiment (NoSREx) 2009-2012. For three consecutive years, the in situ driven Tbs have 21.0-K root-mean-squared error (RMSE) while the coupled simulations have 24.7-K RMSE. However, after isolating the dry snow period and excluding diurnal melting snow conditions, 12.2- and 6.3-K RMSEs are achieved from in situ and coupled cases, respectively, in the 2011 water year.
机译:现有多种微波辐射传递模型(RTM)可以模拟积雪的亮度温度(Tb)。由于积雪散布过程的各个物理公式,使RTM产生一致的Tb响应仍然具有挑战性。本文研究了三种广泛使用的多层RTM:1)分层积雪的微波发射模型(MEMLS); 2)基于密堆积粘性球的米氏散射的准晶体近似(QCA)的致密介质辐射传递; 3)赫尔辛基工业大学(HUT)模型。有趣的是,当由相同的雪堆物理特性驱动时,这些模型产生的Tb响应略有不同。然后评估取决于RTM的选择的Tb变化,以增进对积雪堆微波发射中模型差异的理解。我们首先对三个RTM的Tb预测作为雪粒大小,密度和深度的函数进行敏感性研究。尽管来自所有三个RTM的Tb随雪粒尺寸的增加而减小,但发现对于瑞利散射方案中的小晶粒尺寸,要求比例因子具有相同的Tb衰减量。但是,对于较大的晶粒,由于RTM的散射假设不同,缩放系数不足以匹配模型输出。对于雪深和密度增加的单个雪层,所有三个RTM都显示出由于路径长度和光学深度的增加而导致的Tb衰减。通过向三个RTM馈入由耦合模拟中的原地天气强迫驱动的雪物理模型的输出,可以进行进一步的评估。该耦合模型的输出包括积雪堆的物理特性和Tb。通过使用积雪地层观测,还利用由原位雪坑观测驱动的RTM进行了另一组Tb模拟。将耦合情况下的积雪物理输出结果与现场积雪地层观测结果进行比较。并将两种Tb模拟与欧洲航天局(ESA)北欧雪雷达实验(NoSREx)2009-2012年的地面微波观测进行比较。连续三年,原位驱动的Tb具有21.0-K均方根误差(RMSE),而耦合模拟具有24.7-K RMSE。但是,在隔离干雪时段并排除了日间融雪条件之后,在2011供水年度,分别通过原位和耦合情况获得了12.2和6.3-K RMSE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号