首页> 外文期刊>Water resources research >Simulation and Assimilation of Passive Microwave Data Using a Snowpack Model Coupled to a Calibrated Radiative Transfer Model Over Northeastern Canada
【24h】

Simulation and Assimilation of Passive Microwave Data Using a Snowpack Model Coupled to a Calibrated Radiative Transfer Model Over Northeastern Canada

机译:使用Snowpack模型和校准的加拿大东北部辐射传输模型对无源微波数据进行模拟和同化

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Over northern snowmelt-dominated basins, the snow water equivalent (SWE) is of primary interest for hydrological forecasting. This paper evaluates first the performance of a detailed multilayer snowpack model (Crocus), driven by meteorological predictions generated by the Canadian Global Environmental Multiscale model, for hydrological applications. Simulations were compared to daily snow depth and SWE measurements over Quebec, northeastern Canada (56-45 degrees N), for 2012-2016, highlighting an overestimation of the annual maximum snow depth (35%) and of the annual maximum SWE (16%), which is not accurate enough for hydrological applications. To improve SWE simulations, a chain of models is implemented to simulate and to assimilate passive microwave satellite observations. The snowpack model is coupled to a microwave snow emission model (Dense Media Radiative Transfer-Multilayers model, DMRT-ML), and the comparison of simulated brightness temperatures (T-Bs) with surface-based T-B measurements (at 11, 19 and 37GHz) shows best results when the snow stickiness parameter is set to 0.17 in DMRT-ML. The overall root-mean-square error (RMSE) obtained by the calibrated coupling reaches 27K, significantly better than the RMSE obtained by considering nonsticky spheres in DMRT-ML (43.0K). The relevance of T-B assimilation is tested with synthetic observations to evaluate the information content of each frequency for SWE estimates. The assimilation scheme is a Sequential Importance Resampling Particle filter using an ensemble of perturbed meteorological forcing data. The results show a SWE RMSE reduced by 82% with T-B assimilation compared to without assimilation.
机译:在北部融雪为主的盆地,雪水当量(SWE)是水文预报的主要关注点。本文首先评估由加拿大全球环境多尺度模型产生的气象预测驱动的详细多层积雪模型(番红花)在水文应用中的性能。将模拟与加拿大东北部魁北克(56-45度北纬度)在2012-2016年的每日降雪深度和SWE测量值进行了比较,突显出高估了年度最大降雪深度(35%)和年度最大降雪深度(16%) ),对于水文应用而言不够准确。为了改善SWE仿真,实施了一系列模型来仿真和吸收无源微波卫星的观测结果。积雪模型与微波积雪发射模型(稠密介质辐射传递多层模型,DMRT-ML)耦合,并且将模拟亮度温度(T-Bs)与基于表面的TB测量(在11、19和37GHz时)进行比较)在DMRT-ML中将雪黏性参数设置为0.17时显示最佳结果。通过校准耦合获得的总均方根误差(RMSE)达到27K,明显优于通过考虑DMRT-ML中的非粘性球获得的RMSE(43.0K)。使用综合观测资料测试T-B同化的相关性,以评估SWE估计的每个频率的信息内容。同化方案是一种顺序重要性重采样粒子滤波器,使用了一组扰动的气象强迫数据。结果表明,与未同化相比,T-B同化的SWE RMSE降低了82%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号