首页> 外文期刊>IEEE transactions on evolutionary computation >Playing to learn: case-injected genetic algorithms for learning to play computer games
【24h】

Playing to learn: case-injected genetic algorithms for learning to play computer games

机译:学习玩:注入案例的遗传算法,用于学习玩电脑游戏

获取原文
获取原文并翻译 | 示例

摘要

We use case-injected genetic algorithms (CIGARs) to learn to competently play computer strategy games. CIGARs periodically inject individuals that were successful in past games into the population of the GA working on the current game, biasing search toward known successful strategies. Computer strategy games are fundamentally resource allocation games characterized by complex long-term dynamics and by imperfect knowledge of the game state. CIGAR plays by extracting and solving the game's underlying resource allocation problems. We show how case injection can be used to learn to play better from a human's or system's game-playing experience and our approach to acquiring experience from human players showcases an elegant solution to the knowledge acquisition bottleneck in this domain. Results show that with an appropriate representation, case injection effectively biases the GA toward producing plans that contain important strategic elements from previously successful strategies.
机译:我们使用案例注入遗传算法(CIGARs)学习熟练玩计算机策略游戏。 CIGAR会定期将在过去的游戏中取得成功的个人注入到当前游戏的GA群体中,从而将搜索偏向已知的成功策略。从根本上说,计算机策略游戏是一种资源分配游戏,其特征在于复杂的长期动态以及对游戏状态的不完善的了解。 CIGAR通过提取和解决游戏的基本资源分配问题来进行游戏。我们展示了如何使用案例注入从人类或系统的游戏体验中学习更好的玩法,并且我们从人类玩家那里获取经验的方法展示了解决该领域知识获取瓶颈的绝佳解决方案。结果表明,通过适当的表述,案例注入可以有效地使GA偏向于制定包含先前成功策略中重要战略要素的计划。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号