首页> 外文期刊>IEEE transactions on evolutionary computation >Cooperative coevolution of artificial neural network ensembles for pattern classification
【24h】

Cooperative coevolution of artificial neural network ensembles for pattern classification

机译:人工神经网络集成的协同协同进化用于模式分类

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a cooperative coevolutive approach for designing neural network ensembles. Cooperative coevolution is a recent paradigm in evolutionary computation that allows the effective modeling of cooperative environments. Although theoretically, a single neural network with a sufficient number of neurons in the hidden layer would suffice to solve any problem, in practice many real-world problems are too hard to construct the appropriate network that solve them. In such problems, neural network ensembles are a successful alternative. Nevertheless, the design of neural network ensembles is a complex task. In this paper, we propose a general framework for designing neural network ensembles by means of cooperative coevolution. The proposed model has two main objectives: first, the improvement of the combination of the trained individual networks; second, the cooperative evolution of such networks, encouraging collaboration among them, instead of a separate training of each network. In order to favor the cooperation of the networks, each network is evaluated throughout the evolutionary process using a multiobjective method. For each network, different objectives are defined, considering not only its performance in the given problem, but also its cooperation with the rest of the networks. In addition, a population of ensembles is evolved, improving the combination of networks and obtaining subsets of networks to form ensembles that perform better than the combination of all the evolved networks. The proposed model is applied to ten real-world classification problems of a very different nature from the UCI machine learning repository and proben1 benchmark set. In all of them the performance of the model is better than the performance of standard ensembles in terms of generalization error. Moreover, the size of the obtained ensembles is also smaller.
机译:本文提出了一种设计神经网络集成体的协同协同进化方法。合作协同进化是进化计算中的一种最新范例,它允许对协同环境进行有效建模。尽管从理论上讲,在隐藏层中具有足够数量的神经元的单个神经网络就足以解决任何问题,但实际上,许多现实世界中的问题都难以构建合适的网络来解决。在此类问题中,神经网络集成是成功的替代方案。然而,神经网络集成的设计是一项复杂的任务。在本文中,我们提出了一种通过协同协同进化设计神经网络集成的通用框架。提出的模型有两个主要目标:第一,改进训练有素的个体网络的结合;第二,这种网络的合作发展,鼓励它们之间的合作,而不是对每个网络进行单独的培训。为了促进网络之间的协作,使用多目标方法在整个进化过程中对每个网络进行评估。对于每个网络,都定义了不同的目标,不仅要考虑其在给定问题中的性能,还要考虑其与其他网络的合作。另外,集合体不断演化,从而改善了网络的组合并获得了网络的子集,从而形成了比所有进化网络的组合都表现更好的集合体。所提出的模型应用于与UCI机器学习存储库和proben1基准集性质非常不同的十个现实分类问题。在所有方面,就泛化误差而言,模型的性能均优于标准集成的性能。此外,所获得的乐团的尺寸也更小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号