首页> 外文期刊>IEEE transactions on evolutionary computation >Toward a Matrix-Free Covariance Matrix Adaptation Evolution Strategy
【24h】

Toward a Matrix-Free Covariance Matrix Adaptation Evolution Strategy

机译:朝着无协方差矩阵矩阵适应演化策略

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we discuss a method for generating new individuals such that their mean vector and the covariance matrix are defined by formulas analogous to the covariance matrix adaptation evolution strategy (CMA-ES). In contrast to CMA-ES, which generates new individuals using multivariate Gaussian distribution with an explicitly defined covariance matrix, the introduced method uses combinations of difference vectors between archived individuals and univariate Gaussian random vectors along directions of past shifts of the population midpoints. We use this method to formulate the differential evolution strategy (DES)-an algorithm that is a crossover between differential evolution (DE) and CMA-ES. The numerical results presented in this paper indicate that DES is competitive against CMA-ES in performing both local and global optimization.
机译:在本文中,我们讨论了一种用于产生新的个人的方法,使得它们的平均矢量和协方差矩阵由类似于协方差矩阵适应演化策略(CMA-ES)的公式定义。与CMA-es形成对比,它使用具有明确定义的协方差矩阵的多变量高斯分布产生新的个人,所引入的方法使用群体中群体和单变量高斯随机向量之间的差值向量的组合沿着人口中点的过去换档的方向。我们使用这种方法来制定差分演进策略(des)-an算法,该算法是差分演进(de)和cma-es之间的交叉。本文提出的数值结果表明,在执行本地和全球优化方面,DES对CMA-es具有竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号