首页> 外文期刊>IEEE transactions on evolutionary computation >Improved Regularity Model-Based EDA for Many-Objective Optimization
【24h】

Improved Regularity Model-Based EDA for Many-Objective Optimization

机译:用于多目标优化的基于规则性模型的改进EDA

获取原文
获取原文并翻译 | 示例

摘要

The performance of multiobjective evolutionary algorithms deteriorates appreciably in solving many-objective optimization problems (MaOPs) which encompass more than three objectives. One of the known rationales is the loss of selection pressure which leads to the selected parents not generating promising offspring toward Pareto-optimal front (PF) with diversity. Estimation of distribution algorithms sample new solutions with a probabilistic model built from the statistics extracting over the existing solutions so as to mitigate the adverse impact of genetic operators. In this paper, an improved regularity-based estimation of distribution algorithm is proposed to effectively tackle unconstrained MaOPs. In the proposed algorithm, diversity repairing mechanism is utilized to mend the areas, where need nondominated solutions with a closer proximity to the PF. Then favorable solutions are generated by the model built from the regularity of the solutions surrounding a group of representatives. These two steps collectively enhance the selection pressure which gives rise to the superior convergence of the proposed algorithm. In addition, dimension reduction technique is employed in the decision space to speed up the estimation search of the proposed algorithm. Finally, by assigning the Pareto-optimal solutions to the uniformly distributed reference vectors, a set of solutions with excellent diversity and convergence is obtained. To measure the performance, NSGA-III, GrEA, MOEA/D, HypE, MBN-EDA, and RM-MEDA are selected to perform comparison experiments over DTLZ and DTLZ-test suites with 3-, 5-, 8-, 10-, and 15-objective. Experimental results quantified by the selected performance metrics reveal that the proposed algorithm shows considerable competitiveness in addressing unconstrained MaOPs.
机译:在解决包含三个以上目标的多目标优化问题(MaOP)时,多目标进化算法的性能会明显下降。已知的理由之一是选择压力的丧失,导致选择的父母没有朝着具有多样性的帕累托最优阵线(PF)产生有希望的后代。分布算法的估计使用从现有解决方案中提取的统计数据建立的概率模型对新解决方案进行抽样,以减轻遗传算子的不利影响。本文提出了一种改进的基于规则性的分布估计算法,以有效解决无约束的MaOP。在提出的算法中,利用多样性修复机制修复需要非主导解且与PF距离更近的区域。然后,由围绕一组代表的解的规则性建立的模型生成有利的解。这两个步骤共同提高了选择压力,从而提高了所提出算法的收敛性。另外,在决策空间中采用降维技术来加快算法的估计搜索。最后,通过将Pareto最优解分配给均匀分布的参考向量,可以获得一组具有极佳多样性和收敛性的解。为了测量性能,选择了NSGA-III,GrEA,MOEA / D,HypE,MBN-EDA和RM-MEDA,以在DTLZ和DTLZ上进行比较实验 n - n测试套件具有3-,5-,8 -,10-和15-目标。通过所选性能指标量化的实验结果表明,该算法在解决无约束的MaOP方面显示出相当大的竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号