首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >An Improved Evolutionary Algorithm Based on a Multi-Search Strategy and an External Population Strategy for Many-Objective Optimization
【24h】

An Improved Evolutionary Algorithm Based on a Multi-Search Strategy and an External Population Strategy for Many-Objective Optimization

机译:一种改进的基于多搜索策略的进化算法和许多客观优化的外部人口策略

获取原文
获取原文并翻译 | 示例

摘要

Balancing the convergence and diversity of many-objective evolutionary algorithms is difficult and challenging. In this work, a multi-search strategy based on decomposition is proposed to generate good offspring and improve convergence, and an external population strategy is used to maintain the diversity of the obtained solutions. The multi-search strategy allows the selection of sparse and convergent nondominated solutions to carry out the exploration and exploitation steps. Experiments are conducted on 15 benchmark functions from the CEC 2018 with 5, 10, and 15 objectives. The results indicate that the proposed algorithm can obtain a set of solutions with better diversity and convergence than the five efficient state-of-the-art algorithms, i.e. NSGAIII, MOEA/D, MOEA/DD, KnEA, and RVEA.
机译:平衡许多客观进化算法的收敛和多样性难以挑战。 在这项工作中,提出了一种基于分解的多搜索策略,以产生良好的后代和改善收敛,并且使用外部人口策略来维持所获得的解决方案的多样性。 多搜索策略允许选择稀疏和收敛的NondoMinate解决方案,以执行勘探和剥削步骤。 实验由来自CEC 2018的15个基准函数进行,其中5,10和15个目标。 结果表明,该算法可以获得比五种有效的最新算法,即NSGaiii,MoEA / D,MoEA / DD,KNEA和RVEA具有更好的多样性和收敛性的一组解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号