首页> 外文期刊>IEEE Transactions on Cognitive and Developmental Systems >A Circadian Rhythms Learning Network for Resisting Cognitive Periodic Noises of Time-Varying Dynamic System and Applications to Robots
【24h】

A Circadian Rhythms Learning Network for Resisting Cognitive Periodic Noises of Time-Varying Dynamic System and Applications to Robots

机译:一种昼夜节律学习网络,用于抵抗时变动态系统和应用程序的认知定期噪声和机器人

获取原文
获取原文并翻译 | 示例

摘要

Time-varying dynamic system contaminated by cognitive noises is universal in the fields of engineering and science. In this article, a circadian rhythms learning network (CRLN) is proposed and investigated for disposing the noise disturbed time-varying dynamic system. To do so, a vector-error function is first defined. Second, a neural dynamic model is formulated. Third, a co-state matrix is integrated into the model, of which the states are the linear combination of the previous periodic states and errors, which can effectively suppress periodic noises. Theoretical analysis and mathematical derivation prove the global exponential convergence performance of the proposed CRLN model. Finally, a practical noise disturbed time-varying dynamic system example with four different noises illustrates the accuracy and efficacy of the proposed CRLN model. Comparisons with traditional zeroing neural network further verify the advantages of the proposed CRLN model.
机译:通过认知噪音污染的时变动态系统在工程和科学领域是普遍的。在本文中,提出并研究了昼夜节律学习网络(CRLN),用于处理噪声扰动的时变动态系统。为此,首先定义矢量错误功能。其次,制定了神经动态模型。第三,将共态矩阵集成到模型中,其中状态是先前周期状态和错误的线性组合,这可以有效地抑制周期性噪声。理论分析和数学推导证明了所提出的CRLN模型的全局指数收敛性能。最后,具有四种不同噪声的实际噪声扰动的时变动态系统示例说明了所提出的CRLN模型的准确性和功效。与传统归零神经网络的比较进一步验证了所提出的CRLN模型的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号