首页> 外文期刊>IEEE Transactions on Circuits and Systems >A model-based approach for filtering and edge detection in noisy images
【24h】

A model-based approach for filtering and edge detection in noisy images

机译:基于模型的噪声图像滤波和边缘检测方法

获取原文
获取原文并翻译 | 示例

摘要

The authors consider the problem of enhancement and edge detection on noisy, real-world images. The restoration and edge detection framework is based on an autoregressive (AR) random-field model. An edge is detected if the first and second directional derivatives and a local estimate of the variance at each point satisfy certain criteria. When noise is present, a good estimate of the original from the noisy images improves the signal-to-noise ratio, resulting in better estimates of the directional derivatives. To avoid excessive computation, the problem of estimation of the original image and the model parameters is presented as a combination of a reduced-update Kalman filter and an adaptive-least-squares parameter estimation algorithm. The restoration process is completed with a min-max replacement scheme to enhance edge strength. An orientation-sensitive detector resulting from the use of an AR model may not detect edges of significantly different orientations. This is partially overcome by running four edge detectors on the four interior pixels of a 4*4 window; this corresponds to rotating the window in successive multiples of 90 degrees . Comparisons with R.M. Haralick's (1984) facet model edge detector, R. Nevatia and K.R. Babu's (1980) line finder, and J. Canny's (1986) edge detector are given.
机译:作者考虑了在嘈杂的真实世界图像上进行增强和边缘检测的问题。恢复和边缘检测框架基于自回归(AR)随机字段模型。如果第一和第二方向导数以及每个点的方差的局部估计满足某些条件,则检测到边缘。当存在噪声时,从噪声图像中对原始图像进行良好的估计可以改善信噪比,从而更好地估计方向导数。为了避免过多的计算,将减少图像更新的卡尔曼滤波器和自适应最小二乘参数估计算法结合起来提出了原始图像和模型参数的估计问题。修复过程通过最小最大替换方案完成,以增强边缘强度。使用AR模型产生的方向感应检测器可能无法检测到方向明显不同的边缘。通过在4 * 4窗口的四个内部像素上运行四个边缘检测器,可以部分解决此问题。这对应于以90度的连续倍数旋转窗口。与R.M.的比较Haralick(1984)的刻面模型边缘检测器R.Nevatia和K.R.给出了Babu(1980)的寻线仪和J. Canny(1986)的边缘检测仪。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号