首页> 外文期刊>Biomedical Circuits and Systems, IEEE Transactions on >Spike Latency Coding in Biologically Inspired Microelectronic Nose
【24h】

Spike Latency Coding in Biologically Inspired Microelectronic Nose

机译:受生物启发的微电子鼻的峰值延迟编码

获取原文
获取原文并翻译 | 示例

摘要

Recent theoretical and experimental findings suggest that biological olfactory systems utilize relative latencies or time-to-first spikes for fast odor recognition. These time-domain encoding methods exhibit reduced computational requirements and improved classification robustness. In this paper, we introduce a microcontroller-based electronic nose system using time-domain encoding schemes to achieve a power-efficient, compact, and robust gas identification system. A compact (4.5 cm$,times,$ 5 cm$,times,$ 2.2 cm) electronic nose, which is integrated with a tin–oxide gas-sensor array and capable of wireless communication with computers or mobile phones through Bluetooth, was implemented and characterized by using three different gases (ethanol, carbon monoxide, and hydrogen). During operation, the readout circuit digitizes the gas-sensor resistances into a concentration-independent spike timing pattern, which is unique for each individual gas. Both sensing and recognition operations have been successfully demonstrated in hardware. Two classification algorithms (rank order and spike distance) have been implemented. Both algorithms do not require any explicit knowledge of the gas concentration to achieve simplified training procedures, and exhibit comparable performances with conventional pattern-recognition algorithms while enabling hardware-friendly implementation.
机译:最近的理论和实验发现表明,生物嗅觉系统利用相对潜伏期或首次出现时间的峰值来快速识别气味。这些时域编码方法显示出减少的计算要求和改进的分类鲁棒性。在本文中,我们介绍了一种基于微控制器的电子鼻系统,该系统使用时域编码方案来实现省电,紧凑且坚固的气体识别系统。实现了一个紧凑的电子鼻(4.5厘米×5厘米×2.2厘米),该电子鼻与氧化锡气体传感器阵列集成在一起,能够通过蓝牙与计算机或手机进行无线通信其特点是使用三种不同的气体(乙醇,一氧化碳和氢气)。在操作过程中,读出电路将气体传感器的电阻数字化为浓度无关的尖峰定时模式,该模式对于每种气体都是唯一的。传感和识别操作均已在硬件中成功演示。已经实现了两种分类算法(等级顺序和尖峰距离)。两种算法都不需要任何气体浓度的明确知识即可实现简化的培训程序,并且在实现硬件友好的实现的同时,可以表现出与传统模式识别算法相当的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号