首页> 外文期刊>IEEE signal processing letters >Boundary-Guided Feature Aggregation Network for Salient Object Detection
【24h】

Boundary-Guided Feature Aggregation Network for Salient Object Detection

机译:用于显着目标检测的边界引导特征聚合网络

获取原文
获取原文并翻译 | 示例

摘要

Fully convolutional networks (FCN) has significantly improved the performance of many pixel-labeling tasks, such as semantic segmentation and depth estimation. However, it still remains nontrivial to thoroughly utilize the multilevel convolutional feature maps and boundary information for salient object detection. In this letter, we propose a novel FCN framework to integrate multilevel convolutional features recurrently with the guidance of object boundary information. First, a deep convolutional network is used to extract multilevel feature maps and separately aggregate them into multiple resolutions, which can be used to generate coarse saliency maps. Meanwhile, another boundary information extraction branch is proposed to generate boundary features. Finally, an attention-based feature fusion module is designed to fuse boundary information into salient regions to achieve accurate boundary inference and semantic enhancement. The final saliency maps are the combination of the predicted boundary maps and integrated saliency maps, which are more closer to the ground truths. Experiments and analysis on four large-scale benchmarks verify that our framework achieves new state-of-the-art results.
机译:完全卷积网络(FCN)大大改善了许多像素标记任务的性能,例如语义分割和深度估计。然而,为显着目标检测而充分利用多级卷积特征图和边界信息仍然是不平凡的。在这封信中,我们提出了一种新颖的FCN框架,该框架可以在对象边界信息的指导下反复集成多级卷积特征。首先,深度卷积网络用于提取多级特征图,并将其分别聚合为多种分辨率,可用于生成粗糙的显着图。同时,提出了另一个边界信息提取分支来生成边界特征。最后,设计了一种基于注意力的特征融合模块,将边界信息融合到显着区域中,以实现准确的边界推断和语义增强。最终显着图是预测边界图和集成显着图的组合,它们更接近于地面真实情况。通过对四个大型基准进行的实验和分析,证明我们的框架取得了最新的技术成果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号