首页> 中文期刊> 《计算机与数字工程》 >基于海天线引导与卷积神经网络的舰船目标检测

基于海天线引导与卷积神经网络的舰船目标检测

     

摘要

红外舰船目标检测在自动目标识别系统中具有重要作用.海天背景下的舰船目标检测通常可以先检测海天线,从而减小目标检测的计算量,提高目标检测的效率.论文结合海天线的分界特性与直线特性,提出基于多特性融合的海天线检测方法,取得较好的效果.在海天线检测基础上,将卷积神经网络的方法引入舰船检测任务中来.通过自行设计网络结构,自主标记训练样本,实现基于卷积神经网络的舰船目标检测方法.实验表明,海天线引导降低了神经网络算法的计算量,使得检测过程更具有实用性.神经网络的引入也让舰船目标检测任务有了更通用更简单的方案.%Infrared ship target detection plays an important role in automatic target recognition system.Shipboard target detec-tion in the background of sea sky can usually detect the sea antenna,thus reducing the calculation of the target detection,improving the efficiency of target detection.Based on the boundary characteristics and the straight line characteristics of the sea antenna,this paper proposes a sea antenna detection method based on multi- characteristic fusion,and obtains good results.On the basis of sea antenna detection,the convolution neural network method is introduced into the ship detection task.Through the self- design of the network structure and self-labeled training samples,ship target detection method based on the convolution neural network is achieved. Experiments show that the sea antenna guidance reduces the computational complexity of the neural network algorithm, making the detection process more practical.The introduction of the neural network also allows the ship target detection task to have a more general and simpler solution.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号