首页> 外文期刊>Journal of visual communication & image representation >Salient object detection via a boundary-guided graph structure
【24h】

Salient object detection via a boundary-guided graph structure

机译:通过边界导向图结构突出的物体检测

获取原文
获取原文并翻译 | 示例

摘要

Graph-based salient object detection methods have gained more and more attention recently. However, existing works fail to separate effectively salient object and background in some challenging scenes. Inspired by this observation, we propose an effective salient object detection method based on a novel boundary-guided graph structure. More specifically, the input image is firstly segmented into a series of superpixels. Then we integrate two prior cues to generate the coarse saliency map, a novel weighting mechanism is proposed to balance the proportion of two prior cues according to their performance. Secondly, we propose a novel boundary-guided graph structure to explore deeply the intrinsic relevance between superpixels. Based on the proposed graph structure, an iterative propagation mechanism is constructed to refine the coarse saliency map. Experimental results on four datasets show adequately the superiority of the proposed method than other state-of-the-art methods.
机译:基于图的显着物体检测方法最近获得了越来越多的关注。 但是,现有的作品无法在一些具有挑战性的场景中分离有效的突出物体和背景。 灵感来自该观察,我们提出了一种基于新型边界导向图结构的有效的突出物体检测方法。 更具体地,输入图像首先将输入图像分段为一系列超像素。 然后我们整合了两个先前提示来产生粗糙的显着图,提出了一种新的加权机制,以根据其性能平衡两个先前提示的比例。 其次,我们提出了一种新的边界导向图结构,探讨超像素之间的内在相关性。 基于所提出的图形结构,构造迭代传播机制以优化粗糙显着图。 在四个数据集上的实验结果充分显示了所提出的方法的优越性,而不是其他最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号