首页> 外文期刊>Neurocomputing >Graph model-based salient object detection using objectness and multiple saliency cues
【24h】

Graph model-based salient object detection using objectness and multiple saliency cues

机译:使用对象性和多个显着性线索的基于图模型的显着对象检测

获取原文
获取原文并翻译 | 示例

摘要

Recent years have witnessed increasing interest in salient object detection, which aims at stimulating the human visual attention mechanism to detect and segment the most attractive object in natural scenes, and can be widely applied in numerous computer vision tasks. In this paper, by considering both objectness cue and saliency detection, we propose a graph model-based bottom-up salient object detection framework by fusing multiple saliency maps using low-level features and objectness features under a manifold ranking framework. Specifically, for each feature, we utilize geodesic distance between any two superpixels to construct the affinity matrix and un-normalized Laplacian matrix of the graph. Then, we apply saliency optimization to refine each saliency map generated by manifold ranking with the first-stage query, and integrate saliency maps corresponding to different features by multilayer cellular automata in the final stage. Extensive experimental results demonstrate that our method can deliver promising performance in comparison to several state-of-the-art bottom-up methods on many benchmark datasets. (C) 2018 Elsevier B.V. All rights reserved.
机译:近年来,目睹了对显着物体检测的浓厚兴趣,其目的是激发人类的视觉注意力机制来检测和分割自然场景中最吸引人的物体,并且可以广泛地应用于众多计算机视觉任务中。在本文中,通过同时考虑对象提示和显着性检测,我们提出了一种基于图模型的自下而上的显着对象检测框架,该方法通过在流形排序框架下使用低级特征和对象特征融合多个显着性图来实现。具体来说,对于每个特征,我们利用任意两个超像素之间的测地距离来构造图的亲和力矩阵和未归一化的拉普拉斯矩阵。然后,我们应用显着性优化来优化通过多级排序与第一阶段查询生成的每个显着性图,并在最后阶段通过多层细胞自动机整合与不同特征相对应的显着性图。大量的实验结果表明,与许多基准数据集上的几种最新的自下而上的方法相比,我们的方法可以提供有希望的性能。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第5期|188-202|共15页
  • 作者单位

    Harbin Inst Technol, Shenzhen Grad Sch, Dept Comp Sci, Shenzhen, Peoples R China;

    Harbin Inst Technol, Shenzhen Grad Sch, Dept Comp Sci, Shenzhen, Peoples R China;

    Harbin Inst Technol, Shenzhen Grad Sch, Dept Comp Sci, Shenzhen, Peoples R China;

    City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China;

    Univ Windsor, Dept Elect & Comp Engn, Windsor, ON, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Salient object; Objectness; Graph model; Manifold ranking; Multiple cues;

    机译:显着对象;客观性;图模型;流形排序;多线索;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号