首页> 外文期刊>IEEE Robotics & Automation Magazine >Multifidelity Reinforcement Learning With Gaussian Processes: Model-Based and Model-Free Algorithms
【24h】

Multifidelity Reinforcement Learning With Gaussian Processes: Model-Based and Model-Free Algorithms

机译:高斯工艺的多程度强化学习:基于模型和无模型算法

获取原文
获取原文并翻译 | 示例

摘要

We study the problem of reinforcement learning (RL) using as few real-world samples as possible. A naive application of RL can be inefficient in large and continuous-state spaces. We present two versions of multifidelity RL (MFRL), model based and model free, that leverage Gaussian processes (GPs) to learn the optimal policy in a real-world environment. In the MFRL framework, an agent uses multiple simulators of the real environment to perform actions. With increasing fidelity in a simulator chain, the number of samples used in successively higher simulators can be reduced. By incorporating GPs in the MFRL framework, we empirically observe an up to 40% reduction in the number of samples for model-based RL and 60% reduction for the model-free version. We examine the performance of our algorithms through simulations and realworld experiments for navigation with a ground robot.
机译:我们使用尽可能少量的现实世界样本来研究强化学习(RL)的问题。在大型和连续状态空间中,R1的天真效率可能是低效的。我们介绍了两个版本的多倍性RL(MFRL),模型和自由模式,利用高斯进程(GPS)来学习现实世界环境中的最佳政策。在MFRL框架中,代理使用真实环境的多个模拟器来执行操作。随着模拟器链中的越来越多的保真度,可以减少连续更高的模拟器中使用的样品的数量。通过在MFRL框架中纳入GPS,我们经验在无模型的RL的样本数量和模型无模型版本减少60%的降低程度上高达40%。我们通过模拟和RealWorld实验来检查我们的算法的性能,用于使用地面机器人导航。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号