首页> 外文期刊>IEEE Robotics and Automation Letters >PVStereo: Pyramid Voting Module for End-to-End Self-Supervised Stereo Matching
【24h】

PVStereo: Pyramid Voting Module for End-to-End Self-Supervised Stereo Matching

机译:PVstereo:用于端到端的金字塔投票模块,用于结束自我监督的立体声匹配

获取原文
获取原文并翻译 | 示例

摘要

Supervised learning with deep convolutional neural networks (DCNNs) has seen huge adoption in stereo matching. However, the acquisition of large-scale datasets with well-labeled ground truth is cumbersome and labor-intensive, making supervised learning-based approaches often hard to implement in practice. To overcome this drawback, we propose a robust and effective self-supervised stereo matching approach, consisting of a pyramid voting module (PVM) and a novel DCNN architecture, referred to as OptStereo. Specifically, our OptStereo first builds multi-scale cost volumes, and then adopts a recurrent unit to iteratively update disparity estimations at high resolution; while our PVM can generate reliable semi-dense disparity images, which can be employed to supervise OptStereo training. Furthermore, we publish the HKUST-Drive dataset, a large-scale synthetic stereo dataset, collected under different illumination and weather conditions for research purposes. Extensive experimental results demonstrate the effectiveness and efficiency of our self-supervised stereo matching approach on the KITTI Stereo benchmarks and our HKUST-Drive dataset. PVStereo, our best-performing implementation, greatly outperforms all other state-of-the-art self-supervised stereo matching approaches. Our project page is available at sites.google.com/view/pvstereo.
机译:利用深度卷积神经网络(DCNNS)监督学习在立体声匹配中看到了巨大的采用。然而,收购具有良好标记的地面真理的大规模数据集是繁琐和劳动密集型,使受监管的基于学习的方法在实践中难以实施。为了克服这一缺点,我们提出了一种强大而有效的自我监督的立体声匹配方法,由金字塔投票模块(PVM)和新的DCNN架构组成,称为OptStereo。具体而言,我们的OptStereo首先构建多尺度成本卷,然后采用经常性单元以高分辨率迭代更新差异估计;虽然我们的PVM可以产生可靠的半密集差距图像,但可用于监督Optstereo培训。此外,我们在不同的照明和天气条件下发布HKST-Drive数据集,该数据集是在不同的照明和天气条件下收集的。广泛的实验结果表明了我们在基蒂立体声基准和我们的HKST-Drive数据集中的自我监督立体声匹配方法的有效性和效率。 PVStereo,我们最持有的实施,大大优于所有最先进的自我监督的立体声匹配方法。我们的项目页面可在sites.google.com/view/pvstereo中找到。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号