首页> 外文期刊>IEEE Robotics and Automation Letters >Deep Neural Network Approach in Robot Tool Dynamics Identification for Bilateral Teleoperation
【24h】

Deep Neural Network Approach in Robot Tool Dynamics Identification for Bilateral Teleoperation

机译:双侧遥控机器人工具动力学识别深度神经网络方法

获取原文
获取原文并翻译 | 示例

摘要

For bilateral teleoperation, the haptic feedback demands the availability of accurate force information transmitted from the remote site. Nevertheless, due to the limitation of the size, the force sensor is usually attached outside of the patient's abdominal cavity for the surgical operation. Hence, it measures not only the interaction forces on the surgical tip but also the surgical tool dynamics. In this letter, a model-free based deep convolutional neural network (DCNN) structure is proposed for the tool dynamics identification, which features fast computation and noise robustness. After the tool dynamics identification using DCNN, the calibration is performed, and the bilateral teleoperation is demonstrated to verify the proposed method. The comparison results prove that the proposed DCNN model promises prominent performance than other methods. Low computational time (0.0031 seconds) is ensured by the rectified linear unit (ReLU) function, and the DCNN approach provides superior accuracy for predicting the noised dynamics force and enable its feasibility for bilateral teleoperation.
机译:对于双侧遥操作,触觉反馈要求从远程站点传输的准确力信息的可用性。然而,由于尺寸的限制,力传感器通常附接在患者的腹腔外部以进行外科手术。因此,它不仅衡量手术尖端上的相互作用力,而且衡量手术工具动态。在这封信中,提出了一种基于模型的深卷积神经网络(DCNN)结构,用于刀具动态识别,其具有快速的计算和噪声鲁棒性。在使用DCNN的刀具动力学识别之后,进行校准,并证明双侧遥操作以验证所提出的方法。比较结果证明,所提出的DCNN模型承诺的性能与其他方法有关。通过整流的线性单元(Relu)功能确保了低计算时间(0.0031秒),并且DCNN方法提供了卓越的准确性,以预测喷嘴动力学力并实现其双侧遥操作的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号