首页> 外文期刊>IEEE Robotics and Automation Letters >Force-Guided High-Precision Grasping Control of Fragile and Deformable Objects Using sEMG-Based Force Prediction
【24h】

Force-Guided High-Precision Grasping Control of Fragile and Deformable Objects Using sEMG-Based Force Prediction

机译:使用基于Semg的力预测,力引导高精度抓取控制脆弱和可变形物体

获取原文
获取原文并翻译 | 示例

摘要

Regulating contact forces with high precision is crucial for grasping and manipulating fragile or deformable objects. We aim to utilize the dexterity of human hands to regulate the contact forces for robotic hands and exploit human sensory-motor synergies in a wearable and non-invasive way. We extracted force information from the electric activities of skeletal muscles during their voluntary contractions through surface electromyography (sEMG). We built a regression model based on a Neural Network to predict the gripping force from the preprocessed sEMG signals and achieved high accuracy ($R<^>2 = 0.982$). Based on the force command predicted from human muscles, we developed a force-guided control framework, where force control was realized via an admittance controller that tracked the predicted gripping force reference to grasp delicate and deformable objects. We demonstrated the effectiveness of the proposed method on a set of representative fragile and deformable objects from daily life, all of which were successfully grasped without any damage or deformation.
机译:用高精度调节接触力对于抓握和操纵易碎或可变形物体至关重要。我们的目标是利用人手的灵活性来调节机器人手的接触力,并以可穿戴和非侵入性方式利用人类感官电动机协同作用。通过表面肌电图(SEMG)在其自愿收缩期间从骨骼肌的电动活动中提取强制信息。我们基于神经网络构成了一个回归模型,以预测来自预处理的SEMG信号的抓握力,并实现了高精度($ r <^> 2 = 0.982 $)。基于从人体肌肉预测的力命令,我们开发了一种力引导控制框架,其中通过追踪预测的夹持力引用的导纳控制器实现了力控制,以抓握精致和可变形的物体。我们证明了从日常生活中的一组代表性脆弱和可变形物体上的提出方法的有效性,所有这些都成功地掌握了没有任何损坏或变形的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号