首页> 外文期刊>IEEE Robotics and Automation Letters >Self-Supervised Learning of State Estimation for Manipulating Deformable Linear Objects
【24h】

Self-Supervised Learning of State Estimation for Manipulating Deformable Linear Objects

机译:操纵可变形线性对象的状态估计自我监督

获取原文
获取原文并翻译 | 示例
       

摘要

We demonstrate model-based, visual robot manipulation of deformable linear objects. Our approach is based on a state-space representation of the physical system that the robot aims to control. This choice has multiple advantages, including the ease of incorporating physics priors in the dynamics model and perception model, and the ease of planning manipulation actions. In addition, physical states can naturally represent object instances of different appearances. Therefore, dynamics in the state space can be learned in one setting and directly used in other visually different settings. This is in contrast to dynamics learned in pixel space or latent space, where generalization to visual differences are not guaranteed. Challenges in taking the state-space approach are the estimation of the high-dimensional state of a deformable object from raw images, where annotations are very expensive on real data, and finding a dynamics model that is both accurate, generalizable, and efficient to compute. We are the first to demonstrate self-supervised training of rope state estimation on real images, without requiring expensive annotations. This is achieved by our novel self-supervising learning objective, which is generalizable across a wide range of visual appearances. With estimated rope states, we train a fast and differentiable neural network dynamics model that encodes the physics of mass-spring systems. Our method has a higher accuracy in predicting future states compared to models that do not involve explicit state estimation and do not use any physics prior, while only using 3% of training data. We also show that our approach achieves more efficient manipulation, both in simulation and on a real robot, when used within a model predictive controller.
机译:我们展示了基于模型的可变形线性对象的视觉机器人操作。我们的方法基于机器人旨在控制的物理系统的状态表示。这种选择具有多种优点,包括在动态模型和感知模型中纳入物理前驱,以及易于规划操纵行动。此外,物理状态可以自然地代表不同外观的对象实例。因此,可以在一个设置中学习状态空间中的动态,并直接用于其他视觉上不同的设置。这与在像素空间或潜在空间中学习的动态相反,其中不保证对视觉差异的泛化。采用状态空间方法的挑战是估计从原始图像的可变形对象的高维状态,其中注释在真实数据上非常昂贵,并找到一种准确,更广泛和有效的动力学模型。我们是第一个在实际图像上展示对绳子状态估计的自我监督培训,而无需昂贵的注释。这是我们的小说自我监督学习目标实现,这在广泛的视觉外观上是宽大的。凭借估计的绳索状态,我们培训了一种快速且可微差的神经网络动态模型,用于编码群众弹簧系统的物理学。与不涉及显式状态估计的模型相比,我们的方法在预测未来状态方面具有更高的准确性,并且不使用先前的任何物理,而仅使用3%的培训数据。我们还表明,当在模型预测控制器内使用时,我们的方法在模拟和真正的机器人中实现了更高效的操作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号