首页> 外文期刊>IEEE Robotics and Automation Letters >Power Prediction for Heterogeneous Ground Robots Through Spatial Mapping and Sharing of Terrain Data
【24h】

Power Prediction for Heterogeneous Ground Robots Through Spatial Mapping and Sharing of Terrain Data

机译:通过空间映射和地形数据共享的异构地机器人的功率预测

获取原文
获取原文并翻译 | 示例

摘要

Ground robot power consumption often varies significantly throughout an off-road environment, depending on the terrain. Previous traversals over the environment can inform future predictions through spatial mapping of collected power data. However, such predictions are particular to a single robot. We develop a framework based on multi-task Gaussian process regression (MTGP) to share terrain information across multiple robots. The framework allows for the efficient selection of hyperparameters and the prediction of power consumption along paths through nearest neighbor data selection. The scaling of this approach is demonstrated in simulation. Furthermore, experimental testing with two robots shows a significant reduction in power prediction error when an environment, mapped by one robot, informs the power predictions of another robot.
机译:根据地形,地面机器人电力消耗通常在越野环境中变化。以前的环境遍历可以通过收集的电力数据的空间映射通知未来的预测。然而,这种预测特别是单个机器人。我们通过多任务高斯进程回归(MTGP)开发一个框架,以共享多个机器人的地形信息。该框架允许通过最近的邻居数据选择的路径有效选择高参数和沿路径的功耗预测。在仿真中证明了这种方法的缩放。此外,当由一个机器人映射的环境映射时,具有两个机器人的实验测试显示了电力预测误差的显着降低,通知电力预测另一个机器人。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号