首页> 外文期刊>IEEE Robotics and Automation Letters >A Data-Efficient Geometrically Inspired Polynomial Kernel for Robot Inverse Dynamic
【24h】

A Data-Efficient Geometrically Inspired Polynomial Kernel for Robot Inverse Dynamic

机译:机器人逆动态的高效数据几何启发式多项式核

获取原文
获取原文并翻译 | 示例

摘要

In this letter, we introduce a novel data-driven inverse dynamics estimator based on Gaussian Process Regression. Driven by the fact that the inverse dynamics can be described as a polynomial function on a suitable input space, we propose the use of a novel kernel, called Geometrically Inspired Polynomial Kernel (GIP). The resulting estimator behaves similarly to model-based approaches as concerns data efficiency. Indeed, we proved that the GIP kernel defines a finite-dimensional Reproducing Kernel Hilbert Space that contains the inverse dynamics function computed through the Rigid Body Dynamics. The proposed kernel is based on the recently introduced Multiplicative Polynomial Kernel, a redefinition of the classical polynomial kernel equipped with a set of parameters that allows for a higher regularization. We tested the proposed approach in a simulated environment, and also in real experiments with a UR10 robot. The obtained results confirm that, compared to other data-driven estimators, the proposed approach is more data-efficient and exhibits better generalization properties. Instead, with respect to model-based estimators, our approach requires less prior information and is not affected by model bias.
机译:在这封信中,我们介绍了一种基于高斯过程回归的新型数据驱动逆动力学估计器。基于逆动力学可以描述为合适输入空间上的多项式函数这一事实,我们建议使用一种新颖的内核,称为几何启发式多项式内核(GIP)。最终的估计器在数据效率方面的行为与基于模型的方法类似。实际上,我们证明了GIP内核定义了一个有限维的复制内核希尔伯特空间,其中包含通过刚体动力学计算出的逆动力学函数。提议的内核基于最近推出的乘法多项式内核,它是对经典多项式内核的重新定义,该多项式内核配备了一组参数,可以进行更高的正则化。我们在模拟环境中以及在使用UR10机器人的真实实验中测试了该方法。所获得的结果证实,与其他数据驱动的估计器相比,该方法具有更高的数据效率并具有更好的泛化特性。相反,对于基于模型的估计量,我们的方法需要较少的先验信息,并且不受模型偏差的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号