首页> 外文期刊>IEEE Robotics and Automation Letters >Efficient Wrench-Closure and Interference-Free Conditions Verification for Cable-Driven Parallel Robot Trajectories Using a Ray-Based Method
【24h】

Efficient Wrench-Closure and Interference-Free Conditions Verification for Cable-Driven Parallel Robot Trajectories Using a Ray-Based Method

机译:使用基于射线的方法对电缆驱动的并联机器人轨迹进行有效的扳手关闭和无干扰条件验证

获取原文
获取原文并翻译 | 示例

摘要

This letter introduces a novel approach to verify the feasibility of curved trajectories under both the interference-free (IFC) and wrench-closure (WCC) conditions for spatial cable-driven parallel robots (CDPRs). Existing ray-based methods can only be used either for translation or single degree-of-freedom (DoF) motion, limiting its use to verify the motion of practical trajectories. In this work, the trajectory representation proposed allows the IFC and WFC for the entire trajectory to be verified by simply solving a set of univariate polynomial equations. The translation motion is expressed as polynomial time parametric functions and the orientation motion is defined using a spherical linear interpolation (SLERP) in the quaternion representation for a desired start and end orientation. It is then shown that for the proposed trajectory representation, the IFC and WFC can be verified by solving a set of univariate polynomial equations. Moreover, the exact degree of the resulting polynomial equations are derived for a 6-DoF spatial CDPR. Simulation on a range of different trajectory forms, from linear, quadratic and cubic paths to higher degree functions, show the effectiveness of the method. Finally, comparison with the well-accepted point-wise method shows that the proposed method is more efficient, accurate and ensures the solution continuity.
机译:这封信介绍了一种新颖的方法来验证空间电缆驱动的并联机器人(CDPR)在无干扰(IFC)和扳手闭合(WCC)条件下弯曲轨迹的可行性。现有的基于射线的方法只能用于平移或单自由度(DoF)运动,从而限制了其用于验证实际轨迹运动的用途。在这项工作中,提出的轨迹表示法允许通过简单地求解一组单变量多项式方程来验证整个轨迹的IFC和WFC。将平移运动表示为多项式时间参数函数,并使用四元数表示法中的球面线性插值(SLERP)定义方向运动,以实现所需的开始和结束方向。然后表明,对于所提出的轨迹表示,可以通过求解一组单变量多项式方程来验证IFC和WFC。此外,针对6自由度空间CDPR导出了所得多项式方程的精确度。从线性,二次和三次路径到高次函数的一系列不同轨迹形式的仿真显示了该方法的有效性。最后,与公认的逐点方法进行比较表明,该方法更加有效,准确,并确保了求解的连续性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号