首页> 外文期刊>IEEE/ACM Transactions on Networking >Socially-Driven Learning-Based Prefetching in Mobile Online Social Networks
【24h】

Socially-Driven Learning-Based Prefetching in Mobile Online Social Networks

机译:移动在线社交网络中基于社交驱动的基于学习的预取

获取原文
获取原文并翻译 | 示例

摘要

Mobile online social networks (OSNs) are emerging as the popular mainstream platform for information and content sharing among people. In order to provide the quality of experience support for mobile OSN services, in this paper, we propose a socially-driven learning-based framework, namely Spice, for the media content prefetching to reduce the access delay and enhance mobile user’s satisfaction. Through a large-scale data-driven analysis over real-life mobile Twitter traces from over 17 000 users during a period of five months, we reveal that the social friendship has a great impact on user’s media content click behavior. To capture this effect, we conduct the social friendship clustering over the set of user’s friends, and then develop a cluster-based Latent Bias Model for socially-driven learning-based prefetching prediction. We then propose a usage-adaptive prefetching scheduling scheme by taking into account that different users may possess heterogeneous patterns in the mobile OSN app usage. We comprehensively evaluate the performance of Spice framework using trace-driven emulations on smartphones. Evaluation results corroborate that the Spice can achieve superior performance, with an average 80.6% access delay reduction at the low cost of cellular data and energy consumption. Furthermore, by enabling users to offload their machine learning procedures to a cloud server, our design can achieve up to a factor of 1000 speed-up over the local data training execution on smartphones.
机译:移动在线社交网络(OSN)逐渐成为人们之间共享信息和内容的流行主流平台。为了为移动OSN服务提供体验质量支持,在本文中,我们提出了一种基于社会驱动的基于学习的框架,即Spice,用于预取媒体内容,以减少访问延迟并提高移动用户的满意度。通过在五个月的时间内对来自17,000多名用户的真实移动Twitter跟踪进行的大规模数据驱动分析,我们发现,社交友谊对用户的媒体内容点击行为具有重大影响。为了捕获这种效果,我们对用户的朋友进行了社交友谊聚类,然后开发了基于聚类的潜在偏见模型,用于社交驱动的基于学习的预取预测。然后,我们考虑到不同的用户在移动OSN应用程序使用中可能拥有异构模式,因此提出了一种使用率自适应的预取调度方案。我们使用智能手机上的跟踪驱动仿真全面评估Spice框架的性能。评估结果证实了Spice可以实现卓越的性能,在蜂窝数据和能源消耗较低的情况下,平均可以减少80.6%的访问延迟。此外,通过使用户能够将其机器学习过程卸载到云服务器,我们的设计可以比智能手机上的本地数据培训执行速度提高1000倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号