首页> 外文期刊>IEEE transactions on multimedia >Differential Privacy Oriented Distributed Online Learning for Mobile Social Video Prefetching
【24h】

Differential Privacy Oriented Distributed Online Learning for Mobile Social Video Prefetching

机译:面向差异隐私的分布式分布式在线学习,用于移动社交视频预取

获取原文
获取原文并翻译 | 示例

摘要

The ever fast growing mobile social video traffic has motivated the urgent requirement of alleviating backbone pressures while ensuring the user-quality experience. Mobile video prefetching previously caches the future accessed videos at the edge, which has become a promising solution for traffic offloading and delay reduction. However, providing high performance prefetching still remains problematic in the presence of high dynamic mobile users' viewing behaviors and consecutive generated video content. Besides, given the fact that making prefetching decision requires viewing history that is sensitive, the increasing privacy issues should also be considered. In this paper, we propose a differential privacy oriented distributed online learning method for mobile social video prefetching (DPDL-SVP). Through a large-scale data analysis based on one of the most popular online social network sites, WeiBo.cn, we reveal that users' viewing behaviors have strong a relation with video preference, content popularity, and social interactions. We then formulate the prefetching problem as an online convex optimization based on these three factors. Furthermore, the problem is divided into two subproblems, and we implement a distributed algorithm separately to solve them with differential privacy. The performance bound of the proposed online algorithms is also theoretically proved. We conduct a series simulation based on real viewing traces to evaluate the performance of DPDL-SVP. Evaluation results show how our proposed algorithms achieve superior performance in terms of the prediction accuracy, delay reduction, and scalability.
机译:不断增长的移动社交视频流量激发了在确保用户质量体验的同时缓解骨干压力的迫切需求。移动视频预取以前在边缘缓存了将来访问的视频,这已成为流量卸载和减少延迟的有希望的解决方案。但是,在存在高动态移动用户的观看行为和连续生成的视频内容的情况下,提供高性能的预取仍然存在问题。此外,鉴于做出预取决定需要查看敏感的历史记录这一事实,因此也应考虑不断增加的隐私问题。在本文中,我们提出了一种面向差异隐私的分布式分布式在线学习方法,用于移动社交视频预取(DPDL-SVP)。通过基于最受欢迎的在线社交网站之一WeiBo.cn的大规模数据分析,我们发现用户的观看行为与视频偏好,内容受欢迎程度和社交互动密切相关。然后,我们基于这三个因素将预取问题公式化为在线凸优化。此外,该问题分为两个子问题,我们分别实现了分布式算法以解决差分隐私问题。理论上也证明了所提出的在线算法的性能界限。我们基于实际的观察轨迹进行了一系列仿真,以评估DPDL-SVP的性能。评估结果表明,我们提出的算法如何在预测精度,延迟减少和可伸缩性方面实现出色的性能。

著录项

  • 来源
    《IEEE transactions on multimedia》 |2019年第3期|636-651|共16页
  • 作者单位

    Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China;

    Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China;

    Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China;

    Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China;

    Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China|Capital Normal Univ, Informat Engn Coll, Beijing 100048, Peoples R China;

    Guangzhou Univ, Sch Comp Sci, Guangzhou 510006, Guangdong, Peoples R China|Univ Technol Sydney, Sch Software, Sydney, NSW 2007, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mobile video; social network; content prefetching; differential privacy; distributed online learning;

    机译:移动视频;社交网络;内容预取;差异隐私;分布式在线学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号