首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >A Fast Hierarchical Clustering Algorithm for Functional Modules Discovery in Protein Interaction Networks
【24h】

A Fast Hierarchical Clustering Algorithm for Functional Modules Discovery in Protein Interaction Networks

机译:蛋白质相互作用网络中功能模块发现的快速分层聚类算法

获取原文
获取原文并翻译 | 示例

摘要

As advances in the technologies of predicting protein interactions, huge data sets portrayed as networks have been available. Identification of functional modules from such networks is crucial for understanding principles of cellular organization and functions. However, protein interaction data produced by high-throughput experiments are generally associated with high false positives, which makes it difficult to identify functional modules accurately. In this paper, we propose a fast hierarchical clustering algorithm HC-PIN based on the local metric of edge clustering value which can be used both in the unweighted network and in the weighted network. The proposed algorithm HC-PIN is applied to the yeast protein interaction network, and the identified modules are validated by all the three types of Gene Ontology (GO) Terms: Biological Process, Molecular Function, and Cellular Component. The experimental results show that HC-PIN is not only robust to false positives, but also can discover the functional modules with low density. The identified modules are statistically significant in terms of three types of GO annotations. Moreover, HC-PIN can uncover the hierarchical organization of functional modules with the variation of its parameter's value, which is approximatively corresponding to the hierarchical structure of GO annotations. Compared to other previous competing algorithms, our algorithm HC-PIN is faster and more accurate.
机译:随着预测蛋白质相互作用的技术的进步,描绘为网络的巨大数据集已经可用。从这样的网络中识别功能模块对于理解蜂窝组织和功能的原理至关重要。然而,通过高通量实验产生的蛋白质相互作用数据通常与高假阳性相关,这使得难以准确识别功能模块。在本文中,我们提出了一种基于边缘聚类值的局部度量的快速分层聚类算法HC-PIN,该算法可以在非加权网络和加权网络中使用。提出的算法HC-PIN被应用到酵母蛋白质相互作用网络中,并且通过所有三种类型的基因本体论(GO)术语:生物过程,分子功能和细胞成分来验证所识别的模块。实验结果表明,HC-PIN不仅对误报具有鲁棒性,而且可以发现低密度的功能模块。所识别的模块在三种类型的GO注释方面具有统计意义。此外,HC-PIN可以通过其参数值的变化来揭示功能模块的层次结构,该参数值大约对应于GO注释的层次结构。与以前的其他竞争算法相比,我们的算法HC-PIN更快,更准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号