首页> 外文OA文献 >FAC-PIN: An efficient and fast agglomerative clustering algorithm for protein interaction networks to predict protein complexes and functional modules
【2h】

FAC-PIN: An efficient and fast agglomerative clustering algorithm for protein interaction networks to predict protein complexes and functional modules

机译:FAC-PIN:一种用于蛋白质相互作用网络的高效,快速的聚类算法,可预测蛋白质复合物和功能模块

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Proteins are known to interact with each other to perform specific living organism functions by forming functional modules or protein complexes. Many community detection methods have been devised for the discovery of functional modules or protein complexes in protein interaction networks. One common problem in current agglomerative community detection approaches is that vertices with just one neighbor are often classified as separated clusters, which does not make sense for module or complex identification. In this thesis, we propose a new agglomerative algorithm, FAC-PIN, based on a local premetric of relative vertex-to-vertex clustering value. Our proposed FAC-PIN method is applied to PINs from different species for validating functional modules and protein complexes generated from FAC-PIN with experimentally verified functional modules and complexes respectively. The preliminary computational results show that FAC-PIN can discover functional modules and protein complexes from PINs more accurately. As well as we have also compared the computational times for different species with HC-PIN and CNM algorithms. Our algorithm outperforms two algorithms. Our FAC-PIN algorithm is faster and accurate algorithm which is the current state-of-the-art agglomerative approach to complex prediction and functional module identification.
机译:通过形成功能模块或蛋白质复合物,蛋白质彼此相互作用以执行特定的生物机体功能。为了发现蛋白质相互作用网络中的功能模块或蛋白质复合物,已经设计了许多社区检测方法。当前的聚集社区检测方法中的一个普遍问题是,只有一个邻居的顶点经常被分类为单独的簇,这对于模块识别或复杂识别没有意义。本文基于相对于顶点到顶点的聚类值的局部预度量,提出了一种新的聚集算法FAC-PIN。我们提出的FAC-PIN方法应用于来自不同物种的PIN,以分别验证FAC-PIN产生的功能模块和蛋白质复合物以及经过实验验证的功能模块和复合物。初步的计算结果表明,FAC-PIN可以更准确地从PIN中发现功能模块和蛋白质复合物。以及我们还使用HC-PIN和CNM算法比较了不同物种的计算时间。我们的算法优于两种算法。我们的FAC-PIN算法是一种更快,更准确的算法,它是当前用于复杂预测和功能模块识别的最新技术。

著录项

  • 作者

    Rahman Mohammad Shamsur;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号