首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Quantitative Analysis of Live-Cell Growth at the Shoot Apex of Arabidopsis thaliana: Algorithms for Feature Measurement and Temporal Alignment
【24h】

Quantitative Analysis of Live-Cell Growth at the Shoot Apex of Arabidopsis thaliana: Algorithms for Feature Measurement and Temporal Alignment

机译:拟南芥芽尖活细胞生长的定量分析:特征测量和时间对齐的算法

获取原文
获取原文并翻译 | 示例

摘要

Study of the molecular control of organ growth requires establishment of the causal relationship between gene expression and cell behaviors. We seek to understand this relationship at the shoot apical meristem (SAM) of model plant Arabidopsis thaliana. This requires the spatial mapping and temporal alignment of different functional domains into a single template. Live-cell imaging techniques allow us to observe real-time organ primordia growth and gene expression dynamics at cellular resolution. In this paper, we propose a framework for the measurement of growth features at the 3D reconstructed surface of organ primordia, as well as algorithms for robust time alignment of primordia. We computed areas and deformation values from reconstructed 3D surfaces of individual primordia from live-cell imaging data. Based on these growth measurements, we applied a multiple feature landscape matching (LAM-M) algorithm to ensure a reliable temporal alignment of multiple primordia. Although the original landscape matching (LAM) algorithm motivated our alignment approach, it sometimes fails to properly align growth curves in the presence of high noise/distortion. To overcome this shortcoming, we modified the cost function to consider the landscape of the corresponding growth features. We also present an alternate parameter-free growth alignment algorithm which performs as well as LAM-M for high-quality data, but is more robust to the presence of outliers or noise. Results on primordia and guppy evolutionary growth data show that the proposed alignment framework performs at least as well as the LAM algorithm in the general case, and significantly better in the case of increased noise.
机译:对器官生长的分子控制的研究要求建立基因表达与细胞行为之间的因果关系。我们试图在模型植物拟南芥的茎尖分生组织(SAM)上了解这种关系。这需要将不同功能域的空间映射和时间对齐方式整合到单个模板中。活细胞成像技术使我们能够在细胞分辨率下观察实时器官原基生长和基因表达动态。在本文中,我们提出了在器官原基的3D重建表面上测量生长特征的框架,以及用于稳定原基时间对齐的算法。我们根据活细胞成像数据从单个原基的3D重建表面计算了面积和变形值。基于这些增长度量,我们应用了多特征景观匹配(LAM-M)算法来确保多个原基的可靠时间对齐。尽管原始的景观匹配(LAM)算法激发了我们的对准方法,但是在存在高噪声/失真的情况下,有时有时无法正确对准生长曲线。为克服此缺点,我们修改了成本函数以考虑相应增长特征的态势。我们还提出了一种替代的无参数生长对齐算法,该算法的性能与LAM-M相同,但对于高质量数据却更健壮,可应对异常值或噪声。关于原基和孔雀鱼进化生长数据的结果表明,所提出的比对框架在一般情况下的性能至少与LAM算法相同,而在噪声增加的情况下则明显更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号