首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >Network-Based Methods to Identify Highly Discriminating Subsets of Biomarkers
【24h】

Network-Based Methods to Identify Highly Discriminating Subsets of Biomarkers

机译:基于网络的识别生物标志物高度区分子集的方法

获取原文
获取原文并翻译 | 示例

摘要

Complex diseases such as various types of cancer and diabetes are conjectured to be triggered and influenced by a combination of genetic and environmental factors. To integrate potential effects from interplay among underlying candidate factors, we propose a new network-based framework to identify effective biomarkers by searching for groups of synergistic risk factors with high predictive power to disease outcome. An interaction network is constructed with node weights representing individual predictive power of candidate factors and edge weights capturing pairwise synergistic interactions among factors. We then formulate this network-based biomarker identification problem as a novel graph optimization model to search for multiple cliques with maximum overall weight, which we denote as the Maximum Weighted Multiple Clique Problem (MWMCP). To achieve optimal or near optimal solutions, both an analytical algorithm based on column generation method and a fast heuristic for large-scale networks have been derived. Our algorithms for MWMCP have been implemented to analyze two biomedical data sets: a Type 1 Diabetes (T1D) data set from the Diabetes Prevention Trial-Type 1 (DPT-1) study, and a breast cancer genomics data set for metastasis prognosis. The results demonstrate that our network-based methods can identify important biomarkers with better prediction accuracy compared to the conventional feature selection that only considers individual effects.
机译:据推测,诸如多种类型的癌症和糖尿病等复杂疾病是由遗传和环境因素共同触发和影响的。为了整合潜在候选因素之间相互作用的潜在影响,我们提出了一个基于网络的新框架,通过搜索对疾病结果具有高预测力的协同危险因素组来识别有效的生物标记。构建具有节点权重的交互网络,节点权重代表候选因子的个体预测能力,边缘权重捕获因子之间的成对协同相互作用。然后,我们将此基于网络的生物标记识别问题公式化为一种新颖的图优化模型,以搜索具有最大总权重的多个群体,我们将其称为最大加权多重群体问题(MWMCP)。为了获得最佳或接近最佳的解决方案,既导出了基于列生成方法的解析算法,又导出了大规模网络的快速启发式算法。我们针对MWMCP的算法已被实施,以分析两个生物医学数据集:来自1型糖尿病预防试验(DPT-1)研究的1型糖尿病(T1D)数据集和用于转移预后的乳腺癌基因组学数据集。结果表明,与仅考虑单个效应的常规特征选择相比,我们基于网络的方法可以识别具有重要预测准确性的重要生物标记。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号