首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Integration of Imaging (epi)Genomics Data for the Study of Schizophrenia Using Group Sparse Joint Nonnegative Matrix Factorization
【24h】

Integration of Imaging (epi)Genomics Data for the Study of Schizophrenia Using Group Sparse Joint Nonnegative Matrix Factorization

机译:使用组稀疏关节非负矩阵分解的成像(EPI)基因组学数据的成像(EPI)基因组学数据

获取原文
获取原文并翻译 | 示例

摘要

Schizophrenia (SZ) is a complex disease. Single nucleotide polymorphism (SNP), brain activity measured by functional magnetic resonance imaging (fMRI) and DNA methylation are all important biomarkers that can be used for the study of SZ. To our knowledge, there has been little effort to combine these three datasets together. In this study, we propose a group sparse joint nonnegative matrix factorization (GSJNMF) model to integrate SNP, fMRI, and DNA methylation for the identification of multi-dimensional modules associated with SZ, which can be used to study regulatory mechanisms underlying SZ at multiple levels. The proposed GSJNMF model projects multiple types of data onto a common feature space, in which heterogeneous variables with large coefficients on the same projected bases are used to identify multi-dimensional modules. We also incorporate group structure information available from each dataset. The genomic factors in such modules have significant correlations or functional associations with several brain activities. At the end, we have applied the method to the analysis of real data collected from the Mind Clinical Imaging Consortium (MCIC) for the study of SZ and identified significant biomarkers. These biomarkers were further used to discover genes and corresponding brain regions, which were confirmed to be significantly associated with SZ.
机译:精神分裂症(SZ)是一种复杂的疾病。单核苷酸多态性(SNP),通过功能磁共振成像(FMRI)和DNA甲基化测量的脑活动是所有重要的生物标志物,可用于SZ的研究。为了我们的知识,一点努力将这三个数据集结合在一起。在这项研究中,我们提出了一种群稀疏关节非负基质分子分解(GSJNMF)模型,用于整合SNP,FMRI和DNA甲基化,用于鉴定与SZ相关的多维模块,可用于研究SZ的底层底层的调节机制水平。所提出的GSJNMF模型将多种类型的数据投影到共同的特征空间上,其中在同一投影基座上具有大系数的异构变量用于识别多维模块。我们还包含每个数据集可用的组结构信息。这些模块中的基因组因子具有显着的相关性或具有几种脑活动的功能关联。最后,我们已经将该方法应用于从心灵临床成像联盟(MCIC)收集的真实数据用于研究SZ并鉴定出显着的生物标志物。这些生物标志物进一步用于发现基因和相应的脑区,证实与SZ显着相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号