首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Local-Nearest-Neighbors-Based Feature Weighting for Gene Selection
【24h】

Local-Nearest-Neighbors-Based Feature Weighting for Gene Selection

机译:基于局部最近邻的特征加权在基因选择中的应用

获取原文
获取原文并翻译 | 示例

摘要

Selecting functional genes is essential for analyzing microarray data. Among many available feature (gene) selection approaches, the ones on the basis of the large margin nearest neighbor receive more attention due to their low computational costs and high accuracies in analyzing the high-dimensional data. Yet, there still exist some problems that hamper the existing approaches in sifting real target genes, including selecting erroneous nearest neighbors, high sensitivity to irrelevant genes, and inappropriate evaluation criteria. Previous pioneer works have partly addressed some of the problems, but none of them are capable of solving these problems simultaneously. In this paper, we propose a new local-nearest-neighbors-based feature weighting approach to alleviate the above problems. The proposed approach is based on the trick of locally minimizing the within-class distances and maximizing the between-class distances with the$k$nearest neighbors rule. We further define a feature weight vector, and construct it by minimizing the cost function with a regularization term. The proposed approach can be applied naturally to the multi-class problems and does not require extra modification. Experimental results on the UCI and the open microarray data sets validate the effectiveness and efficiency of the new approach.
机译:选择功能基因对于分析微阵列数据至关重要。在许多可用的特征(基因)选择方法中,基于大边缘最近邻的方法因其计算成本低和分析高维数据的准确性高而受到更多关注。然而,仍然存在一些阻碍筛选真实靶基因的现有方法的问题,包括选择错误的最近邻居,对无关基因的高敏感性以及不合适的评估标准。先前的先驱作品部分解决了一些问题,但没有一个能够同时解决这些问题。在本文中,我们提出了一种新的基于最近邻的特征加权方法来缓解上述问题。提议的方法基于以下技巧:使用 n $ k $ 最近邻居规则。我们进一步定义一个特征权重向量,并通过使用正则项最小化成本函数来构造它。所提出的方法可以自然地应用于多类问题,并且不需要额外的修改。在UCI和开放式微阵列数据集上的实验结果验证了该新方法的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号