首页> 外文期刊>IEE Proceedings. Part K, Vision, image and signal processing >Nonlinear variants of biased discriminants for interactive image retrieval
【24h】

Nonlinear variants of biased discriminants for interactive image retrieval

机译:用于交互式图像检索的有偏判别的非线性变体

获取原文
获取原文并翻译 | 示例

摘要

During an interactive image retrieval process with relevance feedback, kernel-based or boosted learning algorithms can provide superior nonlinear modelling capability. In the paper, such nonlinear extensions for biased discriminants, or BiasMap are discussed. Kernel partial alignment is proposed as the criterion for kernel selection. The associated analysis also provides a gauge on relative class scatters, which can guide an asymmetric learner, such as BiasMap, toward better class modelling. Two boosted versions of BiasMap are also proposed. Unlike existing approaches that boost feature components or vectors to form a composite classifier, the new scheme boosts linear BiasMap toward a nonlinear ranker which is more suited for small-sample learning during interactive image retrieval. Experiments on heterogeneous image database retrieval in addition to small sample face retrieval are used for performance evaluations.
机译:在具有相关性反馈的交互式图像检索过程中,基于内核或增强的学习算法可以提供出色的非线性建模能力。在本文中,讨论了有偏判别或BiasMap的此类非线性扩展。提出将内核局部对齐作为内核选择的标准。关联的分析还提供了相对类散布的量度,可以指导非对称学习者(例如BiasMap)朝更好的类建模迈进。还提出了BiasMap的两个增强版本。与现有的将特征分量或矢量增强以形成复合分类器的方法不同,该新方案将线性BiasMap推向了非线性排序器,该排序器更适合在交互式图像检索期间进行小样本学习。除小样本人脸检索外,还对异构图像数据库进行检索的实验用于性能评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号