首页> 外文OA文献 >Direct kernel biased discriminant analysis: a new content-based image retrieval relevance feedback algorithm
【2h】

Direct kernel biased discriminant analysis: a new content-based image retrieval relevance feedback algorithm

机译:直接核偏判别分析:一种新的基于内容的图像检索相关性反馈算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, a variety of relevance feedback (RF) schemes have been developed to improve the performance of content-based image retrieval (CBIR). Given user feedback information, the key to a RF scheme is how to select a subset of image features to construct a suitable dissimilarity measure. Among various RF schemes, biased discriminant analysis (BDA) based RF is one of the most promising. It is based on the observation that all positive samples are alike, while in general each negative sample is negative in its own way. However, to use BDA, the small sample size (SSS) problem is a big challenge, as users tend to give a small number of feedback samples. To explore solutions to this issue, this paper proposes a direct kernel BDA (DKBDA), which is less sensitive to SSS. An incremental DKBDA (IDKBDA) is also developed to speed up the analysis. Experimental results are reported on a real-world image collection to demonstrate that the proposed methods outperform the traditional kernel BDA (KBDA) and the support vector machine (SVM) based RF algorithms.
机译:近年来,已经开发了各种相关性反馈(RF)方案来提高基于内容的图像检索(CBIR)的性能。给定用户反馈信息,RF方案的关键是如何选择图像特征子集以构建合适的相异性度量。在各种射频方案中,基于偏差判别分析(BDA)的射频是最有前途的技术之一。基于观察,所有阳性样本都是相似的,而通常每个阴性样本都以自己的方式为阴性。但是,使用BDA时,小样本量(SSS)问题是一个很大的挑战,因为用户倾向于提供少量的反馈样本。为了探索该问题的解决方案,本文提出了一种对SSS不太敏感的直接内核BDA(DKBDA)。还开发了增量DKBDA(IDKBDA)以加快分析速度。在真实世界的图像集合上报告了实验结果,以证明所提出的方法优于传统的内核BDA(KBDA)和基于支持向量机(SVM)的RF算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号