首页> 外文期刊>IEE proceedings. Part G, Circuits, devices and systems >Non-Gaussian kernel circuits in analogue VLSI: implications for RBFnetwork performance
【24h】

Non-Gaussian kernel circuits in analogue VLSI: implications for RBFnetwork performance

机译:模拟VLSI中的非高斯核电路:对RBFnetwork性能的影响

获取原文
获取原文并翻译 | 示例

摘要

The authors present a cascadable circuit for the distance metricnand nonlinear functions required by radial basis function (RBF) neuralnnetworks. The distance metric is a quadratic approximation to thenEuclidean distance between two voltages, and the nonlinearity isnproduced using two MOS transistors. This circuit has been developed fornpulse stream neural systems. The operation of the circuit is describednand suggestions are made for its practical implementation in pulsednanalogue VLSI. Since the nonlinearity generated by the circuit has notnbeen used in RBFs before, software results are presented to demonstratenthat the circuit can produce good classification performance. However,nsoftware simulations show that the shape of the nonlinearity hasnimplications for the performance of RBFs using the circuit. The authorsnconsider the implications of these results to the development of pulsednanalogue RBF chips in the limited precision environment of analoguenVLSI. Based on their findings, they make suggestions for the shape andnrange of future centre circuits to make them robust to this limitednprecision and which they believe will help ensure good classificationnperformance is obtained in hardware
机译:作者提出了级联电路,用于径向基函数(RBF)神经元网络所需的距离度量和非线性函数。距离度量是两个电压之间的欧式距离的二次近似值,并且使用两个MOS晶体管产生了非线性。该电路已开发用于脉冲流神经系统。描述了电路的操作,并提出了在脉冲模拟VLSI中实际实现的建议。由于该电路产生的非线性特性以前从未在RBF中使用过,因此给出了软件结果以证明该电路可以产生良好的分类性能。然而,软件仿真表明,非线性的形状对使用该电路的RBF的性能有影响。作者考虑了这些结果对在AnalognVLSI的有限精度环境中脉冲纳米模拟RBF芯片开发的影响。根据他们的发现,他们对未来中心电路的形状和范围提出了建议,以使其对这种有限的精度具有鲁棒性,他们认为这将有助于确保在硬件中获得良好的分类性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号