首页> 外文期刊>IEE proceedings. Part G >Non-Gaussian kernel circuits in analogue VLSI: implications for RBF network performance
【24h】

Non-Gaussian kernel circuits in analogue VLSI: implications for RBF network performance

机译:模拟VLSI中的非高斯核电路:对RBF网络性能的影响

获取原文
获取原文并翻译 | 示例

摘要

The authors present a cascadable circuit for the distance metric and nonlinear functions required by radial basis function (RBF) neural networks. The distance metric is a quadratic approximation to the Euclidean distance between two voltages, and the nonlinearity is produced using two MOS transistors. This circuit has been developed for pulse stream neural systems. The operation of the circuit is described and suggestions are made for its practical implementation in pulsed analogue VLSI. Since the nonlinearity generated by the circuit has not been used in RBFs before, software results are presented to demonstrate that the circuit can produce good classification performance. However, software simulations show that the shape of the nonlinearity has implications for the performance of RBFs using the circuit. The authors consider the implications of these results to the development of pulsed analogue RBF chips in the limited precision environment of analogue VLSI. Based on their findings, they make suggestions for the shape and range of future centre circuits to make them robust to this limited precision and which they believe will help ensure good classification performance is obtained in hardware.
机译:作者提出了一种级联电路,用于径向基函数(RBF)神经网络所需的距离度量和非线性函数。距离度量是两个电压之间的欧几里德距离的二次近似,并且非线性是使用两个MOS晶体管产生的。该电路已开发用于脉冲流神经系统。描述了该电路的操作,并提出了在脉冲模拟VLSI中实际实施的建议。由于该电路产生的非线性以前尚未在RBF中使用,因此提供了软件结果以证明该电路可以产生良好的分类性能。但是,软件仿真显示非线性的形状对使用该电路的RBF的性能有影响。作者考虑了这些结果对模拟VLSI的有限精度环境中脉冲模拟RBF芯片开发的影响。根据他们的发现,他们对未来的中心电路的形状和范围提出了建议,以使其在有限的精度范围内稳健,并相信这将有助于确保在硬件中获得良好的分类性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号