...
首页> 外文期刊>Heat transfer >Finite element analysis of non-Newtonian magnetohemodynamic flow conveying nanoparticles through a stenosed coronary artery
【24h】

Finite element analysis of non-Newtonian magnetohemodynamic flow conveying nanoparticles through a stenosed coronary artery

机译:非牛顿磁动力流经狭窄冠状动脉的纳米颗粒的有限元分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The present study considers two-dimensional mathematical modeling of non-Newtonian nanofluid hemodynamics with heat and mass transfer in a stenosed coronary artery in the presence of a radial magnetic field. The second-grade differential viscoelastic constitutive model is adopted for blood to mimic non-Newtonian characteristics, and blood is considered to contain a homogenous suspension of nanoparticles. The Vogel model is employed to simulate the variation of blood viscosity as a function of temperature. The governing equations are an extension of the Navier-Stokes equations with linear Boussinesq's approximation and Buongiorno's nanoscale model (which simulates both heat and mass transfer). The conservation equations are normalized by employing appropriate nondimensional variables. It is assumed that the maximum height of the stenosis is small in comparison with the radius of the artery, and, furthermore, that the radius of the artery and length of the stenotic region are of comparable magnitude. To study the influence of vessel geometry on blood flow and nanoparticle transport, variation in the design and size of the stenosis is considered in the domain. The transformed equations are solved numerically by means of the finite element method based on the variational approach and simulated using the FreeFEM++ code. A detailed grid- independence study is included. Blood flow, heat, and mass transfer characteristics are examined for the effects of selected geometric, nanoscale, rheological, viscosity, and magnetic parameters, that is, stenotic diameter (d), viscoelastic parameter (A_1), thermophoresis parameter (N_t), Brownian motion parameter (N_b), and magnetic body force parameter (M) at the throat of the stenosis and throughout the arterial domain. The velocity, temperature, and nanoparticle concentration fields are also visualized through instantaneous patterns of contours. An increase in magnetic and thermophoresis parameters is found to enhance the temperature, nanoparticle concentration, and skin-friction coefficient. Increasing Brownian motion parameter is observed to accelerate the blood flow. Narrower stenosis significantly alters the temperature and nanoparticle distributions and magnitudes. The novelty of the study relates to the combination of geometric complexity, multi-physical nanoscale, and thermomagnetic behavior, and also the simultaneous presence of biorheological behavior (all of which arise in actual cardiovascular heat transfer phenomena) in a single work with extensive visualization of the flow, heat, and mass transfer characteristics. The simulations are relevant to the diffusion of nano-drugs in magnet-targeted treatment of stenosed arterial disease.
机译:本研究考虑了在径向磁场存在的情况下,在狭窄的冠状动脉中进行传热和传质的非牛顿纳米流体血流动力学的二维数学模型。血液采用二级微分粘弹性本构模型来模拟非牛顿特性,并且血液被认为含有均匀的纳米颗粒悬浮液。使用Vogel模型来模拟血液粘度随温度的变化。控制方程是Navier-Stokes方程的扩展,具有线性Boussinesq近似和Buongiorno的纳米级模型(模拟了传热和传质)。守恒方程通过采用适当的无量纲变量进行归一化。假定狭窄的最大高度与动脉的半径相比较小,此外,动脉的半径和狭窄区域的长度具有可比较的大小。为了研究血管几何形状对血流和纳米颗粒运输的影响,在该领域中考虑了狭窄的设计和大小的变化。通过基于变分法的有限元方法对变换后的方程进行数值求解,并使用FreeFEM ++代码进行仿真。包括详细的电网独立性研究。检查选定的几何,纳米级,流变,粘度和磁性参数(即狭窄直径(d),粘弹性参数(A_1),热泳参数(N_t),布朗值)的影响对血流,热量和传质特性的影响狭窄喉咙处以及整个动脉区域的运动参数(N_b)和磁体力参数(M)。速度,温度和纳米粒子浓度场也可以通过轮廓的瞬时模式可视化。发现磁和热泳参数的增加可提高温度,纳米颗粒浓度和皮肤摩擦系数。观察到增加的布朗运动参数可加速血液流动。狭窄的狭窄会显着改变温度以及纳米颗粒的分布和大小。这项研究的新颖性涉及几何复杂性,多物理纳米尺度和热磁行为的结合,以及生物流变行为的同时存在(所有这些都发生在实际的心血管传热现象中),并具有广泛的可视化流动,传热和传质特性。该模拟与纳米药物在狭窄动脉疾病的磁铁靶向治疗中的扩散有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号