首页> 外文期刊>Graphical models >ExploreTree: Interactive tree modeling in semantic trait space with online intent learning
【24h】

ExploreTree: Interactive tree modeling in semantic trait space with online intent learning

机译:ExploreTree:通过在线意图学习在语义特征空间中进行交互式树建模

获取原文
获取原文并翻译 | 示例

摘要

Perceptually modeling realistic trees is important for many graphics applications. However, existing methods are mainly rule-based. Few have directly associated control parameters with user modeling intent and semantic tree shape descriptions. In this paper, we propose a new interactive tree modeling system, ExploreTree, that automatically deduces user modeling intent and supports iteratively design of 3D tree models. It consists of two major phases. The first phase is an off-line learning process, where semantic tree traits perceived by humans are learned. Crowdsourced data on example tree models are collected and analyzed to construct the semantic trait space as well as the embedding of trees into this space. Built upon it, the second phase is an interactive exploration of tree models via a few user clicks, where a user intent evaluation model is learned online to guide the modeling process. Modeled trees and user studies demonstrate the efficiency and capability of ExploreTree. (C) 2017 ElsevierInc. Allrightsreserved.
机译:在视觉上对逼真的树进行建模对于许多图形应用程序很重要。但是,现有方法主要基于规则。很少有将控制参数与用户建模意图和语义树形状描述直接关联的控件。在本文中,我们提出了一种新的交互式树建模系统ExploreTree,该系统可自动推断用户建模意图并支持3D树模型的迭代设计。它包括两个主要阶段。第一阶段是离线学习过程,其中学习人类感知的语义树特征。收集并分析了关于示例树模型的众包数据,以构建语义特征空间以及将树嵌入到该空间中。在此基础上,第二阶段是通过几次用户单击来交互式浏览树模型,其中在线学习用户意图评估模型以指导建模过程。建模的树和用户研究证明了ExploreTree的效率和功能。 (C)2017爱思唯尔公司版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号