首页> 外文期刊>Genetic programming and evolvable machines >Implementing the template method pattern in genetic programming for improved time series prediction
【24h】

Implementing the template method pattern in genetic programming for improved time series prediction

机译:在遗传程序设计中实现模板方法模式以改进时间序列预测

获取原文
获取原文并翻译 | 示例

摘要

Abstract Modularity is an ongoing focus in genetic programming research. Enhanced modularity can accelerate solution convergence and increase human understanding and knowledge gained from evolved programs. Prior advances in modularity research have addressed programming language elements such as functions, modules, and recursion. This paper proposes improving modularity by considering non-language elements, specifically software design patterns. A new genetic programming technique implementing the template method pattern is described. This technique was tested and compared to existing genetic programming approaches in the prediction of nonlinear time series subject to abrupt changes in the underlying data generation process. Such series are often seen in areas such as finance and meteorology and have proved challenging for genetic programming to model and predict. Experimental results demonstrate the potential for incorporating additional software design patterns into genetic programming and applying these techniques to additional problem domains.
机译:摘要模块化是基因编程研究的一个持续重点。增强的模块化可以加速解决方案的融合,并增加人们从不断发展的程序中获得的理解和知识。模块化研究的先前进展已经解决了编程语言元素,例如功能,模块和递归。本文提出通过考虑非语言元素(特别是软件设计模式)来提高模块化。描述了一种实现模板方法模式的新遗传编程技术。经过测试,将该技术与现有的遗传程序设计方法进行了比较,以预测非线性时间序列中潜在的基础数据生成过程的突然变化。在金融和气象学等领域经常看到这样的序列,事实证明,对于基因编程进行建模和预测具有挑战性。实验结果证明了将其他软件设计模式整合到基因编程中并将这些技术应用于其他问题领域的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号