首页> 外文OA文献 >Automatically Defined Templates for Improved Prediction of Non-stationary, Nonlinear Time Series in Genetic Programming
【2h】

Automatically Defined Templates for Improved Prediction of Non-stationary, Nonlinear Time Series in Genetic Programming

机译:自动定义的模板,用于改进遗传规划中非平稳,非线性时间序列的预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Soft methods of artificial intelligence are often used in the prediction of non-deterministic time series that cannot be modeled using standard econometric methods. These series, such as occur in finance, often undergo changes to their underlying data generation process resulting in inaccurate approximations or requiring additional human judgment and input in the process, hindering the potential for automated solutions.Genetic programming (GP) is a class of nature-inspired algorithms that aims to evolve a population of computer programs to solve a target problem. GP has been applied to time series prediction in finance and other domains. However, most GP-based approaches to these prediction problems do not consider regime change.This paper introduces two new genetic programming modularity techniques, collectively referred to as automatically defined templates, which better enable prediction of time series involving regime change. These methods, based on earlier established GP modularity techniques, take inspiration from software design patterns and are more closely modeled after the way humans actually develop software. Specifically, a regime detection branch is incorporated into the GP paradigm. Regime specific behavior evolves in a separate program branch, implementing the template method pattern.A system was developed to test, validate, and compare the proposed approach with earlier approaches to GP modularity. Prediction experiments were performed on synthetic time series and on the Su26P 500 index. The performance of the proposed approach was evaluated by comparing prediction accuracy with existing methods.One of the two techniques proposed is shown to significantly improve performance of time series prediction in series undergoing regime change. The second proposed technique did not show any improvement and performed generally worse than existing methods or the canonical approaches. The difference in relative performance was shown to be due to a decoupling of reusable modules from the evolving main program population. This observation also explains earlier results regarding the inferior performance of genetic programming techniques using a similar, decoupled approach. Applied to financial time series prediction, the proposed approach beat a buy and hold return on the Su26P 500 index as well as the return achieved by other regime aware genetic programming methodologies. No approach tested beat the benchmark return when factoring in transaction costs.
机译:人工智能的软方法通常用于无法确定的时间序列的预测中,这些时间序列无法使用标准计量经济学方法进行建模。这些序列(例如发生在金融中)经常会对其基础数据生成过程进行更改,从而导致近似值不准确或在过程中需要额外的人工判断和输入,从而阻碍了自动解决方案的潜力。基因编程(GP)是自然的一类受启发的算法,旨在发展大量计算机程序来解决目标问题。 GP已应用于金融和其他领域的时间序列预测。但是,大多数基于GP的方法可以解决这些预测问题。本文介绍了两种新的遗传编程模块技术,这些技术统称为自动定义的模板,可以更好地预测涉及体制变化的时间序列。这些方法基于较早建立的GP模块化技术,从软件设计模式中汲取灵感,并按照人类实际开发软件的方式进行了更紧密的建模。具体而言,将状态检测分支合并到GP范例中。特定于政权的行为在单独的程序分支中发展,实现了模板方法模式。开发了一个系统来测试,验证和比较所提出的方法与较早的GP模块化方法。对合成时间序列和S u26P 500指数进行了预测实验。通过将预测精度与现有方法进行比较来评估所提出方法的性能。所提出的两种技术之一表明可以显着提高经历政权变更的系列时间序列预测的性能。提出的第二种技术没有表现出任何改进,并且通常比现有方法或规范方法差。结果表明,相对性能的差异是由于可重复使用的模块与不断发展的主程序群体之间的脱钩。该观察结果还解释了有关使用类似的,分离的方法的基因编程技术性能较差的早期结果。在金融时间序列预测中,所提出的方法击败了S u26P 500指数的买入和持有收益,以及其他通过制度感知的遗传规划方法获得的收益。在考虑交易成本时,没有经过测试的方法能超过基准回报。

著录项

  • 作者

    Moskowitz David;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号