首页> 外文期刊>Fuzzy sets and systems >An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network
【24h】

An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network

机译:自组织模糊神经网络的模糊规则在线提取方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a hybrid neural network, called the self-organising fuzzy neural network (SOFNN), to extract fuzzy rules from the training data. The first hidden layer of this network consists of ellipsoidal basis function (EBF) neurons. Every EBF neuron in the SOFNN has both a centre vector and a width vector. Neurons are organised by the network itself. The methods of the structure and parameter learning, based on new adding and pruning techniques and a recursive learning algorithm, are simple and effective, with a high accuracy and a compact structure. Simulations show that the SOFNN has the capability to encode fuzzy rules in the resulting network.
机译:本文提出了一种混合神经网络,称为自组织模糊神经网络(SOFNN),用于从训练数据中提取模糊规则。该网络的第一个隐藏层由椭圆基函数(EBF)神经元组成。 SOFNN中的每个EBF神经元都具有中心向量和宽度向量。神经元是由网络本身组织的。基于新的加减修剪技术和递归学习算法的结构和参数学习方法简单有效,具有较高的精度和紧凑的结构。仿真表明,SOFNN能够对生成的网络中的模糊规则进行编码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号