首页> 外文期刊>Neurocomputing >On-line learning, reasoning, rule extraction and aggregation in locally optimized evolving fuzzy neural networks
【24h】

On-line learning, reasoning, rule extraction and aggregation in locally optimized evolving fuzzy neural networks

机译:局部优化的演化模糊神经网络的在线学习,推理,规则提取和聚合

获取原文
获取原文并翻译 | 示例

摘要

Fuzzy neural networks are connectionist systems that facilitate learning from data, reasoning over fuzzy rules, rule insertion, rule extraction, and rule adaptation. The concept of a particular class of fuzzy neural networks, called FuNNs, is further developed in this paper to a new concept of evolving neuro-fuzzy systems (EfuNNs), with respective algorithms for learning, aggregation, rule insertion, rule extraction.
机译:模糊神经网络是连接器系统,可促进从数据中学习,对模糊规则进行推理,规则插入,规则提取和规则适应。本文将一类特殊的模糊神经网络(称为FuNN)的概念进一步发展为演化神经模糊系统(EfuNN)的新概念,并具有用于学习,聚集,规则插入,规则提取的各种算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号