首页> 外文期刊>Future generation computer systems >An online learning model based on episode mining for workload prediction in cloud
【24h】

An online learning model based on episode mining for workload prediction in cloud

机译:基于情节挖掘的在线学习模型用于云中的工作量预测

获取原文
获取原文并翻译 | 示例

摘要

The resource provisioning is one of the challenging problems in the cloud environment. The resources should be allocated dynamically according to the demand changes of the applications. Over-provisioning increases energy wasting and costs. On the other hand, under-provisioning causes Service Level Agreements (SLA) violation and Quality of Service (QoS) dropping. Therefore the allocated resources should be close to the current demand of applications as much as possible. Thus, the prediction of the future workload of applications is an essential step before the resource provisioning. In our previous work, we proposed a Prediction mOdel based on Sequential paTtern mlNinG (POSITING), which considers the correlation between different resources and extracts behavioural patterns of applications independently of the fixed pattern length explicitly. Although POSITING provides reliable results, it is not able to adapt according to the workload variations. The application behaviour might change and drift due to the dynamic nature of cloud. For this purpose, we investigate the capabilities of online learning for POSITING. This paper proposes a Prediction mOdel based on episode miNing with the capabiliTy of online learNinG (RELENTING) based on POSITING. Thus, in addition to the accuracy, adaptability, one of the most important characteristics of the application prediction models, is fulfilled. The performance of the proposed model is evaluated based on both real and synthetic workloads. The experimental results show that the proposed model adapts to the behavioural changes of the application and learns the new behavioural patterns rapidly in comparison to the other state-of-the-art methods such as moving average, linear regression, neural networks and hybrid prediction approaches. (C) 2018 Elsevier B.V. All rights reserved.
机译:资源供应是云环境中具有挑战性的问题之一。应根据应用程序的需求变化动态分配资源。过度配置会增加能源浪费和成本。另一方面,配置不足会导致违反服务水平协议(SLA)和服务质量(QoS)下降。因此,分配的资源应尽可能接近当前应用程序的需求。因此,对应用程序未来工作量的预测是资源供应之前必不可少的步骤。在我们之前的工作中,我们提出了一种基于顺序模式混合(POSITING)的预测模型,该模型考虑了不同资源之间的相关性,并且明确地提取了与固定模式长度无关的应用程序行为模式。尽管定位提供了可靠的结果,但是它无法根据工作负载的变化进行调整。由于云的动态性质,应用程序的行为可能会发生变化和漂移。为此,我们调查了在线学习的定位能力。本文提出了一种基于情节挖掘的预测模型,并具有基于定位的在线学习能力(RELENTING)。因此,除了准确性,适应性之外,还满足了应用程序预测模型的最重要特征之一。基于实际和综合工作负载评估了所提出模型的性能。实验结果表明,与移动平均,线性回归,神经网络和混合预测方法等其他最新方法相比,所提出的模型能够适应应用程序的行为变化并快速学习新的行为模式。 。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号