首页> 外文期刊>Neurocomputing >Relevance feedback based online learning model for resource bottleneck prediction in cloud servers
【24h】

Relevance feedback based online learning model for resource bottleneck prediction in cloud servers

机译:基于相关反馈的云服务器资源瓶颈预测在线学习模型

获取原文
获取原文并翻译 | 示例

摘要

Cloud servers are highly prone to resource bottleneck failures. In this work, we propose an ensemble learning model to build LSTM-based multiclass classifier for resource bottleneck identification. The workload at cloud servers is highly dynamic in nature. To support continuous online learning of resource bottleneck identification models, we propose relevance feedback based online learning of proposed ensemble model. Here we propose to analyse, catastrophe forgetting and incremental architectural evolution as two fundamental challenges associated with online adaptation of LSTM-based multiclass classifier models. To avoid catastrophic forgetting, we propose a combination of distillation loss and the standard crossentropy loss. For architectural evolution, we propose and analyse three different alternatives to update the architecture of the bottleneck identification model on the fly.We evaluate the proposed approaches on a real world dataset collected in an industrial case study and on a dataset collected in a virtual environment setup using Docker containers. The experimental results show that the proposed approaches outperform existing state-of-the-art methods for bottleneck identification. (C) 2020 Elsevier B.V. All rights reserved.
机译:云服务器非常容易发生资源瓶颈失败。在这项工作中,我们提出了一个集合学习模型,用于构建基于LSTM的多键分类器,用于资源瓶颈标识。云服务器的工作负载在性质上是高度动态的。为了支持持续在线学习资源瓶颈识别模型,我们提出基于相关的在线学习的相关反馈。在这里,我们建议分析,灾难遗忘和增量架构演进作为与基于LSTM的多条分类器模型的在线适应相关的两个基本挑战。为了避免灾难性的遗忘,我们提出了蒸馏损失和标准联交流损失的组合。对于架构演变,我们提出并分析了三种不同的替代方案,以更新乘坐瓶颈识别模型的架构。我们评估在工业案例研究中收集的真实世界数据集的建议方法以及在虚拟环境设置中收集的数据集使用Docker容器。实验结果表明,所提出的方法优于现有的现有最先进的方法来备注识别。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号